MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvALT Structured version   Unicode version

Theorem fvimacnvALT 5849
Description: Another proof of fvimacnv 5845, based on funimass3 5846. If funimass3 5846 is ever proved directly, as opposed to using funimacnv 5525 pointwise, then the proof of funimacnv 5525 should be replaced with this one. (Contributed by Raph Levien, 20-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fvimacnvALT  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )

Proof of Theorem fvimacnvALT
StepHypRef Expression
1 snssi 3942 . . 3  |-  ( A  e.  dom  F  ->  { A }  C_  dom  F )
2 funimass3 5846 . . 3  |-  ( ( Fun  F  /\  { A }  C_  dom  F
)  ->  ( ( F " { A }
)  C_  B  <->  { A }  C_  ( `' F " B ) ) )
31, 2sylan2 461 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F " { A } )  C_  B 
<->  { A }  C_  ( `' F " B ) ) )
4 fvex 5742 . . . 4  |-  ( F `
 A )  e. 
_V
54snss 3926 . . 3  |-  ( ( F `  A )  e.  B  <->  { ( F `  A ) }  C_  B )
6 eqid 2436 . . . . . 6  |-  dom  F  =  dom  F
7 df-fn 5457 . . . . . . 7  |-  ( F  Fn  dom  F  <->  ( Fun  F  /\  dom  F  =  dom  F ) )
87biimpri 198 . . . . . 6  |-  ( ( Fun  F  /\  dom  F  =  dom  F )  ->  F  Fn  dom  F )
96, 8mpan2 653 . . . . 5  |-  ( Fun 
F  ->  F  Fn  dom  F )
10 fnsnfv 5786 . . . . 5  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
119, 10sylan 458 . . . 4  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1211sseq1d 3375 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( { ( F `
 A ) } 
C_  B  <->  ( F " { A } ) 
C_  B ) )
135, 12syl5bb 249 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  ( F " { A } )  C_  B
) )
14 snssg 3932 . . 3  |-  ( A  e.  dom  F  -> 
( A  e.  ( `' F " B )  <->  { A }  C_  ( `' F " B ) ) )
1514adantl 453 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( A  e.  ( `' F " B )  <->  { A }  C_  ( `' F " B ) ) )
163, 13, 153bitr4d 277 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  B  <->  A  e.  ( `' F " B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   {csn 3814   `'ccnv 4877   dom cdm 4878   "cima 4881   Fun wfun 5448    Fn wfn 5449   ` cfv 5454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-fv 5462
  Copyright terms: Public domain W3C validator