MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvi Structured version   Unicode version

Theorem fvimacnvi 5844
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 3942 . . 3  |-  ( A  e.  ( `' F " B )  ->  { A }  C_  ( `' F " B ) )
2 funimass2 5527 . . 3  |-  ( ( Fun  F  /\  { A }  C_  ( `' F " B ) )  ->  ( F " { A } ) 
C_  B )
31, 2sylan2 461 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F " { A } )  C_  B
)
4 fvex 5742 . . . 4  |-  ( F `
 A )  e. 
_V
54snss 3926 . . 3  |-  ( ( F `  A )  e.  B  <->  { ( F `  A ) }  C_  B )
6 cnvimass 5224 . . . . . 6  |-  ( `' F " B ) 
C_  dom  F
76sseli 3344 . . . . 5  |-  ( A  e.  ( `' F " B )  ->  A  e.  dom  F )
8 funfn 5482 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
9 fnsnfv 5786 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
108, 9sylanb 459 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
117, 10sylan2 461 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1211sseq1d 3375 . . 3  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( { ( F `
 A ) } 
C_  B  <->  ( F " { A } ) 
C_  B ) )
135, 12syl5bb 249 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( ( F `  A )  e.  B  <->  ( F " { A } )  C_  B
) )
143, 13mpbird 224 1  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   {csn 3814   `'ccnv 4877   dom cdm 4878   "cima 4881   Fun wfun 5448    Fn wfn 5449   ` cfv 5454
This theorem is referenced by:  fvimacnv  5845  elpreima  5850  iinpreima  5860  lmhmpreima  16124  mpfind  19965
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-fv 5462
  Copyright terms: Public domain W3C validator