MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvi Unicode version

Theorem fvimacnvi 5807
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 3906 . . 3  |-  ( A  e.  ( `' F " B )  ->  { A }  C_  ( `' F " B ) )
2 funimass2 5490 . . 3  |-  ( ( Fun  F  /\  { A }  C_  ( `' F " B ) )  ->  ( F " { A } ) 
C_  B )
31, 2sylan2 461 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F " { A } )  C_  B
)
4 fvex 5705 . . . 4  |-  ( F `
 A )  e. 
_V
54snss 3890 . . 3  |-  ( ( F `  A )  e.  B  <->  { ( F `  A ) }  C_  B )
6 cnvimass 5187 . . . . . 6  |-  ( `' F " B ) 
C_  dom  F
76sseli 3308 . . . . 5  |-  ( A  e.  ( `' F " B )  ->  A  e.  dom  F )
8 funfn 5445 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
9 fnsnfv 5749 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
108, 9sylanb 459 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
117, 10sylan2 461 . . . 4  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  ->  { ( F `  A ) }  =  ( F " { A } ) )
1211sseq1d 3339 . . 3  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( { ( F `
 A ) } 
C_  B  <->  ( F " { A } ) 
C_  B ) )
135, 12syl5bb 249 . 2  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( ( F `  A )  e.  B  <->  ( F " { A } )  C_  B
) )
143, 13mpbird 224 1  |-  ( ( Fun  F  /\  A  e.  ( `' F " B ) )  -> 
( F `  A
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    C_ wss 3284   {csn 3778   `'ccnv 4840   dom cdm 4841   "cima 4844   Fun wfun 5411    Fn wfn 5412   ` cfv 5417
This theorem is referenced by:  fvimacnv  5808  elpreima  5813  iinpreima  5823  lmhmpreima  16083  mpfind  19922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-fv 5425
  Copyright terms: Public domain W3C validator