Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvixp Structured version   Unicode version

Theorem fvixp 7070
 Description: Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
fvixp.1
Assertion
Ref Expression
fvixp
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem fvixp
StepHypRef Expression
1 elixp2 7069 . . 3
21simp3bi 975 . 2
3 fveq2 5731 . . . 4
4 fvixp.1 . . . 4
53, 4eleq12d 2506 . . 3
65rspccva 3053 . 2
72, 6sylan 459 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  wral 2707  cvv 2958   wfn 5452  cfv 5457  cixp 7066 This theorem is referenced by:  funcf2  14070  funcpropd  14102  natcl  14155  natpropd  14178 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465  df-ixp 7067
 Copyright terms: Public domain W3C validator