Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline2 Structured version   Unicode version

Theorem fvline2 26082
Description: Alternate definition of a line. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. A ,  B >. } )
Distinct variable groups:    x, N    x, A    x, B

Proof of Theorem fvline2
StepHypRef Expression
1 fvline 26080 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  { x  |  x  Colinear  <. A ,  B >. } )
2 liness 26081 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B ) 
C_  ( EE `  N ) )
31, 2eqsstr3d 3385 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  ->  { x  |  x  Colinear  <. A ,  B >. } 
C_  ( EE `  N ) )
4 df-ss 3336 . . . 4  |-  ( { x  |  x  Colinear  <. A ,  B >. }  C_  ( EE `  N )  <-> 
( { x  |  x  Colinear  <. A ,  B >. }  i^i  ( EE
`  N ) )  =  { x  |  x  Colinear  <. A ,  B >. } )
53, 4sylib 190 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( { x  |  x  Colinear  <. A ,  B >. }  i^i  ( EE
`  N ) )  =  { x  |  x  Colinear  <. A ,  B >. } )
61, 5eqtr4d 2473 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  ( { x  |  x  Colinear  <. A ,  B >. }  i^i  ( EE `  N ) ) )
7 dfrab2 3618 . 2  |-  { x  e.  ( EE `  N
)  |  x  Colinear  <. A ,  B >. }  =  ( { x  |  x 
Colinear 
<. A ,  B >. }  i^i  ( EE `  N ) )
86, 7syl6eqr 2488 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  A  =/=  B ) )  -> 
( ALine B )  =  { x  e.  ( EE `  N
)  |  x  Colinear  <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424    =/= wne 2601   {crab 2711    i^i cin 3321    C_ wss 3322   <.cop 3819   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   NNcn 10002   EEcee 25829    Colinear ccolin 25973  Linecline2 26070
This theorem is referenced by:  lineunray  26083  lineelsb2  26084  linerflx1  26085  linecom  26086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-ec 6909  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-z 10285  df-uz 10491  df-fz 11046  df-ee 25832  df-colinear 25977  df-line2 26073
  Copyright terms: Public domain W3C validator