MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmpt2d Structured version   Unicode version

Theorem fvmpt2d 5817
Description: Deduction version of fvmpt2 5815. (Contributed by Thierry Arnoux, 8-Dec-2016.)
Hypotheses
Ref Expression
fvmpt2d.1  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
fvmpt2d.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
Assertion
Ref Expression
fvmpt2d  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmpt2d
StepHypRef Expression
1 fvmpt2d.1 . . . 4  |-  ( ph  ->  F  =  ( x  e.  A  |->  B ) )
21fveq1d 5733 . . 3  |-  ( ph  ->  ( F `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
32adantr 453 . 2  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  ( ( x  e.  A  |->  B ) `
 x ) )
4 simpr 449 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
5 fvmpt2d.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
6 eqid 2438 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
76fvmpt2 5815 . . 3  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
84, 5, 7syl2anc 644 . 2  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
93, 8eqtrd 2470 1  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    e. cmpt 4269   ` cfv 5457
This theorem is referenced by:  neiptopreu  17202  ofoprabco  24084  esumcvg  24481  ofcfval2  24492  dstrvprob  24734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fv 5465
  Copyright terms: Public domain W3C validator