MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptdf Structured version   Unicode version

Theorem fvmptdf 5808
Description: Alternate deduction version of fvmpt 5798, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
fvmptdf.1  |-  ( ph  ->  A  e.  D )
fvmptdf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
fvmptdf.3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
fvmptdf.4  |-  F/_ x F
fvmptdf.5  |-  F/ x ps
Assertion
Ref Expression
fvmptdf  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Distinct variable groups:    x, A    x, D    ph, x
Allowed substitution hints:    ps( x)    B( x)    F( x)    V( x)

Proof of Theorem fvmptdf
StepHypRef Expression
1 nfv 1629 . 2  |-  F/ x ph
2 fvmptdf.4 . . . 4  |-  F/_ x F
3 nfmpt1 4290 . . . 4  |-  F/_ x
( x  e.  D  |->  B )
42, 3nfeq 2578 . . 3  |-  F/ x  F  =  ( x  e.  D  |->  B )
5 fvmptdf.5 . . 3  |-  F/ x ps
64, 5nfim 1832 . 2  |-  F/ x
( F  =  ( x  e.  D  |->  B )  ->  ps )
7 fvmptdf.1 . . . 4  |-  ( ph  ->  A  e.  D )
8 elex 2956 . . . 4  |-  ( A  e.  D  ->  A  e.  _V )
97, 8syl 16 . . 3  |-  ( ph  ->  A  e.  _V )
10 isset 2952 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
119, 10sylib 189 . 2  |-  ( ph  ->  E. x  x  =  A )
12 fveq1 5719 . . 3  |-  ( F  =  ( x  e.  D  |->  B )  -> 
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A ) )
13 simpr 448 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
1413fveq2d 5724 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  ( ( x  e.  D  |->  B ) `  A ) )
157adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  =  A )  ->  A  e.  D )
1613, 15eqeltrd 2509 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  e.  D )
17 fvmptdf.2 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  B  e.  V )
18 eqid 2435 . . . . . . . 8  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
1918fvmpt2 5804 . . . . . . 7  |-  ( ( x  e.  D  /\  B  e.  V )  ->  ( ( x  e.  D  |->  B ) `  x )  =  B )
2016, 17, 19syl2anc 643 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  x
)  =  B )
2114, 20eqtr3d 2469 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  (
( x  e.  D  |->  B ) `  A
)  =  B )
2221eqeq2d 2446 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  <-> 
( F `  A
)  =  B ) )
23 fvmptdf.3 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  B  ->  ps ) )
2422, 23sylbid 207 . . 3  |-  ( (
ph  /\  x  =  A )  ->  (
( F `  A
)  =  ( ( x  e.  D  |->  B ) `  A )  ->  ps ) )
2512, 24syl5 30 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps ) )
261, 6, 11, 25exlimdd 1912 1  |-  ( ph  ->  ( F  =  ( x  e.  D  |->  B )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550   F/wnf 1553    = wceq 1652    e. wcel 1725   F/_wnfc 2558   _Vcvv 2948    e. cmpt 4258   ` cfv 5446
This theorem is referenced by:  fvmptdv  5809  yonedalem4b  14365
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fv 5454
  Copyright terms: Public domain W3C validator