MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptf Unicode version

Theorem fvmptf 5784
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5767 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1  |-  F/_ x A
fvmptf.2  |-  F/_ x C
fvmptf.3  |-  ( x  =  A  ->  B  =  C )
fvmptf.4  |-  F  =  ( x  e.  D  |->  B )
Assertion
Ref Expression
fvmptf  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
Distinct variable group:    x, D
Allowed substitution hints:    A( x)    B( x)    C( x)    F( x)    V( x)

Proof of Theorem fvmptf
StepHypRef Expression
1 elex 2928 . . 3  |-  ( C  e.  V  ->  C  e.  _V )
2 fvmptf.1 . . . 4  |-  F/_ x A
3 fvmptf.2 . . . . . 6  |-  F/_ x C
43nfel1 2554 . . . . 5  |-  F/ x  C  e.  _V
5 fvmptf.4 . . . . . . . 8  |-  F  =  ( x  e.  D  |->  B )
6 nfmpt1 4262 . . . . . . . 8  |-  F/_ x
( x  e.  D  |->  B )
75, 6nfcxfr 2541 . . . . . . 7  |-  F/_ x F
87, 2nffv 5698 . . . . . 6  |-  F/_ x
( F `  A
)
98, 3nfeq 2551 . . . . 5  |-  F/ x
( F `  A
)  =  C
104, 9nfim 1828 . . . 4  |-  F/ x
( C  e.  _V  ->  ( F `  A
)  =  C )
11 fvmptf.3 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
1211eleq1d 2474 . . . . 5  |-  ( x  =  A  ->  ( B  e.  _V  <->  C  e.  _V ) )
13 fveq2 5691 . . . . . 6  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
1413, 11eqeq12d 2422 . . . . 5  |-  ( x  =  A  ->  (
( F `  x
)  =  B  <->  ( F `  A )  =  C ) )
1512, 14imbi12d 312 . . . 4  |-  ( x  =  A  ->  (
( B  e.  _V  ->  ( F `  x
)  =  B )  <-> 
( C  e.  _V  ->  ( F `  A
)  =  C ) ) )
165fvmpt2 5775 . . . . 5  |-  ( ( x  e.  D  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
1716ex 424 . . . 4  |-  ( x  e.  D  ->  ( B  e.  _V  ->  ( F `  x )  =  B ) )
182, 10, 15, 17vtoclgaf 2980 . . 3  |-  ( A  e.  D  ->  ( C  e.  _V  ->  ( F `  A )  =  C ) )
191, 18syl5 30 . 2  |-  ( A  e.  D  ->  ( C  e.  V  ->  ( F `  A )  =  C ) )
2019imp 419 1  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   F/_wnfc 2531   _Vcvv 2920    e. cmpt 4230   ` cfv 5417
This theorem is referenced by:  fvmptnf  5785  rdgsucmptf  6649  frsucmpt  6658  dvfsumabs  19864  dvfsumlem1  19867  dvfsumlem4  19870  dvfsum2  19875  dchrisumlem2  21141  dchrisumlem3  21142  fprodntriv  25225  prodss  25230  fprodefsum  25255  mulc1cncfg  27592  expcnfg  27597  stoweidlem23  27643  stoweidlem34  27654  stoweidlem36  27656  wallispilem5  27689  stirlinglem4  27697  stirlinglem11  27704  stirlinglem12  27705  stirlinglem13  27706  stirlinglem14  27707  hlhilset  32424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fv 5425
  Copyright terms: Public domain W3C validator