MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptf Structured version   Unicode version

Theorem fvmptf 5850
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5833 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1  |-  F/_ x A
fvmptf.2  |-  F/_ x C
fvmptf.3  |-  ( x  =  A  ->  B  =  C )
fvmptf.4  |-  F  =  ( x  e.  D  |->  B )
Assertion
Ref Expression
fvmptf  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
Distinct variable group:    x, D
Allowed substitution hints:    A( x)    B( x)    C( x)    F( x)    V( x)

Proof of Theorem fvmptf
StepHypRef Expression
1 elex 2970 . . 3  |-  ( C  e.  V  ->  C  e.  _V )
2 fvmptf.1 . . . 4  |-  F/_ x A
3 fvmptf.2 . . . . . 6  |-  F/_ x C
43nfel1 2588 . . . . 5  |-  F/ x  C  e.  _V
5 fvmptf.4 . . . . . . . 8  |-  F  =  ( x  e.  D  |->  B )
6 nfmpt1 4323 . . . . . . . 8  |-  F/_ x
( x  e.  D  |->  B )
75, 6nfcxfr 2575 . . . . . . 7  |-  F/_ x F
87, 2nffv 5764 . . . . . 6  |-  F/_ x
( F `  A
)
98, 3nfeq 2585 . . . . 5  |-  F/ x
( F `  A
)  =  C
104, 9nfim 1834 . . . 4  |-  F/ x
( C  e.  _V  ->  ( F `  A
)  =  C )
11 fvmptf.3 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
1211eleq1d 2508 . . . . 5  |-  ( x  =  A  ->  ( B  e.  _V  <->  C  e.  _V ) )
13 fveq2 5757 . . . . . 6  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
1413, 11eqeq12d 2456 . . . . 5  |-  ( x  =  A  ->  (
( F `  x
)  =  B  <->  ( F `  A )  =  C ) )
1512, 14imbi12d 313 . . . 4  |-  ( x  =  A  ->  (
( B  e.  _V  ->  ( F `  x
)  =  B )  <-> 
( C  e.  _V  ->  ( F `  A
)  =  C ) ) )
165fvmpt2 5841 . . . . 5  |-  ( ( x  e.  D  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
1716ex 425 . . . 4  |-  ( x  e.  D  ->  ( B  e.  _V  ->  ( F `  x )  =  B ) )
182, 10, 15, 17vtoclgaf 3022 . . 3  |-  ( A  e.  D  ->  ( C  e.  _V  ->  ( F `  A )  =  C ) )
191, 18syl5 31 . 2  |-  ( A  e.  D  ->  ( C  e.  V  ->  ( F `  A )  =  C ) )
2019imp 420 1  |-  ( ( A  e.  D  /\  C  e.  V )  ->  ( F `  A
)  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   F/_wnfc 2565   _Vcvv 2962    e. cmpt 4291   ` cfv 5483
This theorem is referenced by:  fvmptnf  5851  rdgsucmptf  6715  frsucmpt  6724  dvfsumabs  19938  dvfsumlem1  19941  dvfsumlem4  19944  dvfsum2  19949  dchrisumlem2  21215  dchrisumlem3  21216  fprodntriv  25299  prodss  25304  fprodefsum  25329  mulc1cncfg  27735  expcnfg  27740  stoweidlem23  27786  stoweidlem34  27797  stoweidlem36  27799  wallispilem5  27832  stirlinglem4  27840  stirlinglem11  27847  stirlinglem12  27848  stirlinglem13  27849  stirlinglem14  27850  elovmpt3rab1  28131  hlhilset  32833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fv 5491
  Copyright terms: Public domain W3C validator