Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptn Structured version   Unicode version

Theorem fvmptn 5815
 Description: This somewhat non-intuitive theorem tells us the value of its function is the empty set when the class it would otherwise map to is a proper class. This is a technical lemma that can help eliminate redundant sethood antecedents otherwise required by fvmptg 5796. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 9-Sep-2013.)
Hypotheses
Ref Expression
fvmptn.1
fvmptn.2
Assertion
Ref Expression
fvmptn
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem fvmptn
StepHypRef Expression
1 nfcv 2571 . 2
2 nfcv 2571 . 2
3 fvmptn.1 . 2
4 fvmptn.2 . 2
51, 2, 3, 4fvmptnf 5814 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1652   wcel 1725  cvv 2948  c0 3620   cmpt 4258  cfv 5446 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
 Copyright terms: Public domain W3C validator