Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnf Structured version   Unicode version

Theorem fvmptnf 5814
 Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 5815 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmptf.1
fvmptf.2
fvmptf.3
fvmptf.4
Assertion
Ref Expression
fvmptnf
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem fvmptnf
StepHypRef Expression
1 fvmptf.4 . . . . 5
21dmmptss 5358 . . . 4
32sseli 3336 . . 3
4 eqid 2435 . . . . . . 7
51, 4fvmptex 5807 . . . . . 6
6 fvex 5734 . . . . . . 7
7 fvmptf.1 . . . . . . . 8
8 nfcv 2571 . . . . . . . . 9
9 fvmptf.2 . . . . . . . . 9
108, 9nffv 5727 . . . . . . . 8
11 fvmptf.3 . . . . . . . . 9
1211fveq2d 5724 . . . . . . . 8
137, 10, 12, 4fvmptf 5813 . . . . . . 7
146, 13mpan2 653 . . . . . 6
155, 14syl5eq 2479 . . . . 5
16 fvprc 5714 . . . . 5
1715, 16sylan9eq 2487 . . . 4
1817expcom 425 . . 3
193, 18syl5 30 . 2
20 ndmfv 5747 . 2
2119, 20pm2.61d1 153 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1652   wcel 1725  wnfc 2558  cvv 2948  c0 3620   cmpt 4258   cid 4485   cdm 4870  cfv 5446 This theorem is referenced by:  fvmptn  5815  rdgsucmptnf  6679  frsucmptn  6688 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
 Copyright terms: Public domain W3C validator