MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptnf Unicode version

Theorem fvmptnf 5633
Description: The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 5634 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmptf.1  |-  F/_ x A
fvmptf.2  |-  F/_ x C
fvmptf.3  |-  ( x  =  A  ->  B  =  C )
fvmptf.4  |-  F  =  ( x  e.  D  |->  B )
Assertion
Ref Expression
fvmptnf  |-  ( -.  C  e.  _V  ->  ( F `  A )  =  (/) )
Distinct variable group:    x, D
Allowed substitution hints:    A( x)    B( x)    C( x)    F( x)

Proof of Theorem fvmptnf
StepHypRef Expression
1 fvmptf.4 . . . . 5  |-  F  =  ( x  e.  D  |->  B )
21dmmptss 5185 . . . 4  |-  dom  F  C_  D
32sseli 3189 . . 3  |-  ( A  e.  dom  F  ->  A  e.  D )
4 eqid 2296 . . . . . . 7  |-  ( x  e.  D  |->  (  _I 
`  B ) )  =  ( x  e.  D  |->  (  _I  `  B ) )
51, 4fvmptex 5626 . . . . . 6  |-  ( F `
 A )  =  ( ( x  e.  D  |->  (  _I  `  B ) ) `  A )
6 fvex 5555 . . . . . . 7  |-  (  _I 
`  C )  e. 
_V
7 fvmptf.1 . . . . . . . 8  |-  F/_ x A
8 nfcv 2432 . . . . . . . . 9  |-  F/_ x  _I
9 fvmptf.2 . . . . . . . . 9  |-  F/_ x C
108, 9nffv 5548 . . . . . . . 8  |-  F/_ x
(  _I  `  C
)
11 fvmptf.3 . . . . . . . . 9  |-  ( x  =  A  ->  B  =  C )
1211fveq2d 5545 . . . . . . . 8  |-  ( x  =  A  ->  (  _I  `  B )  =  (  _I  `  C
) )
137, 10, 12, 4fvmptf 5632 . . . . . . 7  |-  ( ( A  e.  D  /\  (  _I  `  C )  e.  _V )  -> 
( ( x  e.  D  |->  (  _I  `  B ) ) `  A )  =  (  _I  `  C ) )
146, 13mpan2 652 . . . . . 6  |-  ( A  e.  D  ->  (
( x  e.  D  |->  (  _I  `  B
) ) `  A
)  =  (  _I 
`  C ) )
155, 14syl5eq 2340 . . . . 5  |-  ( A  e.  D  ->  ( F `  A )  =  (  _I  `  C
) )
16 fvprc 5535 . . . . 5  |-  ( -.  C  e.  _V  ->  (  _I  `  C )  =  (/) )
1715, 16sylan9eq 2348 . . . 4  |-  ( ( A  e.  D  /\  -.  C  e.  _V )  ->  ( F `  A )  =  (/) )
1817expcom 424 . . 3  |-  ( -.  C  e.  _V  ->  ( A  e.  D  -> 
( F `  A
)  =  (/) ) )
193, 18syl5 28 . 2  |-  ( -.  C  e.  _V  ->  ( A  e.  dom  F  ->  ( F `  A
)  =  (/) ) )
20 ndmfv 5568 . 2  |-  ( -.  A  e.  dom  F  ->  ( F `  A
)  =  (/) )
2119, 20pm2.61d1 151 1  |-  ( -.  C  e.  _V  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1632    e. wcel 1696   F/_wnfc 2419   _Vcvv 2801   (/)c0 3468    e. cmpt 4093    _I cid 4320   dom cdm 4705   ` cfv 5271
This theorem is referenced by:  fvmptn  5634  rdgsucmptnf  6458  frsucmptn  6467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279
  Copyright terms: Public domain W3C validator