MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab4ndm Structured version   Unicode version

Theorem fvopab4ndm 5828
Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.)
Hypothesis
Ref Expression
fvopab4ndm.1  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
Assertion
Ref Expression
fvopab4ndm  |-  ( -.  B  e.  A  -> 
( F `  B
)  =  (/) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    B( x, y)    F( x, y)

Proof of Theorem fvopab4ndm
StepHypRef Expression
1 fvopab4ndm.1 . . . . . 6  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }
21dmeqi 5074 . . . . 5  |-  dom  F  =  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
3 dmopabss 5084 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  C_  A
42, 3eqsstri 3380 . . . 4  |-  dom  F  C_  A
54sseli 3346 . . 3  |-  ( B  e.  dom  F  ->  B  e.  A )
65con3i 130 . 2  |-  ( -.  B  e.  A  ->  -.  B  e.  dom  F )
7 ndmfv 5758 . 2  |-  ( -.  B  e.  dom  F  ->  ( F `  B
)  =  (/) )
86, 7syl 16 1  |-  ( -.  B  e.  A  -> 
( F `  B
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   (/)c0 3630   {copab 4268   dom cdm 4881   ` cfv 5457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-dm 4891  df-iota 5421  df-fv 5465
  Copyright terms: Public domain W3C validator