MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab6 Structured version   Unicode version

Theorem fvopab6 5827
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
fvopab6.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
fvopab6.3  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
fvopab6  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Distinct variable groups:    x, A, y    ps, x, y    y, B    x, C, y
Allowed substitution hints:    ph( x, y)    B( x)    D( x, y)    R( x, y)    F( x, y)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 2965 . . 3  |-  ( A  e.  D  ->  A  e.  _V )
2 fvopab6.2 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
3 fvopab6.3 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
43eqeq2d 2448 . . . . 5  |-  ( x  =  A  ->  (
y  =  B  <->  y  =  C ) )
52, 4anbi12d 693 . . . 4  |-  ( x  =  A  ->  (
( ph  /\  y  =  B )  <->  ( ps  /\  y  =  C ) ) )
6 iba 491 . . . . 5  |-  ( y  =  C  ->  ( ps 
<->  ( ps  /\  y  =  C ) ) )
76bicomd 194 . . . 4  |-  ( y  =  C  ->  (
( ps  /\  y  =  C )  <->  ps )
)
8 moeq 3111 . . . . . 6  |-  E* y 
y  =  B
98moani 2334 . . . . 5  |-  E* y
( ph  /\  y  =  B )
109a1i 11 . . . 4  |-  ( x  e.  _V  ->  E* y ( ph  /\  y  =  B )
)
11 fvopab6.1 . . . . 5  |-  F  =  { <. x ,  y
>.  |  ( ph  /\  y  =  B ) }
12 vex 2960 . . . . . . 7  |-  x  e. 
_V
1312biantrur 494 . . . . . 6  |-  ( (
ph  /\  y  =  B )  <->  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) )
1413opabbii 4273 . . . . 5  |-  { <. x ,  y >.  |  (
ph  /\  y  =  B ) }  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
1511, 14eqtri 2457 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  ( ph  /\  y  =  B ) ) }
165, 7, 10, 15fvopab3ig 5804 . . 3  |-  ( ( A  e.  _V  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
171, 16sylan 459 . 2  |-  ( ( A  e.  D  /\  C  e.  R )  ->  ( ps  ->  ( F `  A )  =  C ) )
18173impia 1151 1  |-  ( ( A  e.  D  /\  C  e.  R  /\  ps )  ->  ( F `
 A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   E*wmo 2283   _Vcvv 2957   {copab 4266   ` cfv 5455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-iota 5419  df-fun 5457  df-fv 5463
  Copyright terms: Public domain W3C validator