MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvpr1 Unicode version

Theorem fvpr1 5722
Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
Hypotheses
Ref Expression
fvpr1.1  |-  A  e. 
_V
fvpr1.2  |-  C  e. 
_V
Assertion
Ref Expression
fvpr1  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )

Proof of Theorem fvpr1
StepHypRef Expression
1 df-pr 3647 . . . 4  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
21fveq1i 5526 . . 3  |-  ( {
<. A ,  C >. , 
<. B ,  D >. } `
 A )  =  ( ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) `  A )
3 necom 2527 . . . 4  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvunsn 5712 . . . 4  |-  ( B  =/=  A  ->  (
( { <. A ,  C >. }  u.  { <. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
53, 4sylbi 187 . . 3  |-  ( A  =/=  B  ->  (
( { <. A ,  C >. }  u.  { <. B ,  D >. } ) `  A )  =  ( { <. A ,  C >. } `  A ) )
62, 5syl5eq 2327 . 2  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  ( { <. A ,  C >. } `  A ) )
7 fvpr1.1 . . 3  |-  A  e. 
_V
8 fvpr1.2 . . 3  |-  C  e. 
_V
97, 8fvsn 5713 . 2  |-  ( {
<. A ,  C >. } `
 A )  =  C
106, 9syl6eq 2331 1  |-  ( A  =/=  B  ->  ( { <. A ,  C >. ,  <. B ,  D >. } `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    u. cun 3150   {csn 3640   {cpr 3641   <.cop 3643   ` cfv 5255
This theorem is referenced by:  fvpr2  5723  fvtp1  5724  fprb  24129  axlowdimlem6  24575  fvsn2a  25115  repfuntw  25160  pgapspf  26052  pgapspf2  26053  prfv1OLD  26363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fv 5263
  Copyright terms: Public domain W3C validator