MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvreseq Unicode version

Theorem fvreseq 5644
Description: Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
fvreseq  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Distinct variable groups:    x, B    x, F    x, G
Allowed substitution hint:    A( x)

Proof of Theorem fvreseq
StepHypRef Expression
1 fnssres 5373 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
2 fnssres 5373 . . . 4  |-  ( ( G  Fn  A  /\  B  C_  A )  -> 
( G  |`  B )  Fn  B )
31, 2anim12i 549 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  ( G  Fn  A  /\  B  C_  A
) )  ->  (
( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B ) )
43anandirs 804 . 2  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B
) )
5 eqfnfv 5638 . . 3  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( ( F  |`  B ) `  x )  =  ( ( G  |`  B ) `
 x ) ) )
6 fvres 5558 . . . . 5  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
7 fvres 5558 . . . . 5  |-  ( x  e.  B  ->  (
( G  |`  B ) `
 x )  =  ( G `  x
) )
86, 7eqeq12d 2310 . . . 4  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  =  ( ( G  |`  B ) `  x )  <->  ( F `  x )  =  ( G `  x ) ) )
98ralbiia 2588 . . 3  |-  ( A. x  e.  B  (
( F  |`  B ) `
 x )  =  ( ( G  |`  B ) `  x
)  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) )
105, 9syl6bb 252 . 2  |-  ( ( ( F  |`  B )  Fn  B  /\  ( G  |`  B )  Fn  B )  ->  (
( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
114, 10syl 15 1  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  B  C_  A
)  ->  ( ( F  |`  B )  =  ( G  |`  B )  <->  A. x  e.  B  ( F `  x )  =  ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165    |` cres 4707    Fn wfn 5266   ` cfv 5271
This theorem is referenced by:  tfrlem1  6407  tfr3  6431  fseqenlem1  7667  dchrresb  20514  rdgprc  24222  predreseq  24250  wfr3g  24326  frr3g  24351  bnj1536  29202  bnj1253  29363  bnj1280  29366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279
  Copyright terms: Public domain W3C validator