MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun1 Structured version   Unicode version

Theorem fvsnun1 5930
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5931. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1  |-  A  e. 
_V
fvsnun.2  |-  B  e. 
_V
fvsnun.3  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
Assertion
Ref Expression
fvsnun1  |-  ( G `
 A )  =  B

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
21reseq1i 5144 . . . 4  |-  ( G  |`  { A } )  =  ( ( {
<. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )
3 resundir 5163 . . . . 5  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )  =  ( ( {
<. A ,  B >. }  |`  { A } )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  { A } ) )
4 incom 3535 . . . . . . . . 9  |-  ( ( C  \  { A } )  i^i  { A } )  =  ( { A }  i^i  ( C  \  { A } ) )
5 disjdif 3702 . . . . . . . . 9  |-  ( { A }  i^i  ( C  \  { A }
) )  =  (/)
64, 5eqtri 2458 . . . . . . . 8  |-  ( ( C  \  { A } )  i^i  { A } )  =  (/)
7 resdisj 5300 . . . . . . . 8  |-  ( ( ( C  \  { A } )  i^i  { A } )  =  (/)  ->  ( ( F  |`  ( C  \  { A } ) )  |`  { A } )  =  (/) )
86, 7ax-mp 8 . . . . . . 7  |-  ( ( F  |`  ( C  \  { A } ) )  |`  { A } )  =  (/)
98uneq2i 3500 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (
( F  |`  ( C  \  { A }
) )  |`  { A } ) )  =  ( ( { <. A ,  B >. }  |`  { A } )  u.  (/) )
10 un0 3654 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (/) )  =  ( { <. A ,  B >. }  |`  { A } )
119, 10eqtri 2458 . . . . 5  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (
( F  |`  ( C  \  { A }
) )  |`  { A } ) )  =  ( { <. A ,  B >. }  |`  { A } )
123, 11eqtri 2458 . . . 4  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )  =  ( { <. A ,  B >. }  |`  { A } )
132, 12eqtri 2458 . . 3  |-  ( G  |`  { A } )  =  ( { <. A ,  B >. }  |`  { A } )
1413fveq1i 5731 . 2  |-  ( ( G  |`  { A } ) `  A
)  =  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)
15 fvsnun.1 . . . 4  |-  A  e. 
_V
1615snid 3843 . . 3  |-  A  e. 
{ A }
17 fvres 5747 . . 3  |-  ( A  e.  { A }  ->  ( ( G  |`  { A } ) `  A )  =  ( G `  A ) )
1816, 17ax-mp 8 . 2  |-  ( ( G  |`  { A } ) `  A
)  =  ( G `
 A )
19 fvres 5747 . . . 4  |-  ( A  e.  { A }  ->  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  ( {
<. A ,  B >. } `
 A ) )
2016, 19ax-mp 8 . . 3  |-  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  ( {
<. A ,  B >. } `
 A )
21 fvsnun.2 . . . 4  |-  B  e. 
_V
2215, 21fvsn 5928 . . 3  |-  ( {
<. A ,  B >. } `
 A )  =  B
2320, 22eqtri 2458 . 2  |-  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  B
2414, 18, 233eqtr3i 2466 1  |-  ( G `
 A )  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    u. cun 3320    i^i cin 3321   (/)c0 3630   {csn 3816   <.cop 3819    |` cres 4882   ` cfv 5456
This theorem is referenced by:  fac0  11571  ruclem4  12835
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-res 4892  df-iota 5420  df-fun 5458  df-fv 5464
  Copyright terms: Public domain W3C validator