MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvsnun2 Unicode version

Theorem fvsnun2 5716
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5715. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1  |-  A  e. 
_V
fvsnun.2  |-  B  e. 
_V
fvsnun.3  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
Assertion
Ref Expression
fvsnun2  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . 5  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
21reseq1i 4951 . . . 4  |-  ( G  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C 
\  { A }
) ) )  |`  ( C  \  { A } ) )
3 resundir 4970 . . . 4  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  ( C  \  { A } ) )  =  ( ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  u.  (
( F  |`  ( C  \  { A }
) )  |`  ( C  \  { A }
) ) )
4 disjdif 3526 . . . . . . 7  |-  ( { A }  i^i  ( C  \  { A }
) )  =  (/)
5 fvsnun.1 . . . . . . . . 9  |-  A  e. 
_V
6 fvsnun.2 . . . . . . . . 9  |-  B  e. 
_V
75, 6fnsn 5304 . . . . . . . 8  |-  { <. A ,  B >. }  Fn  { A }
8 fnresdisj 5354 . . . . . . . 8  |-  ( {
<. A ,  B >. }  Fn  { A }  ->  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/)  <->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) ) )
97, 8ax-mp 8 . . . . . . 7  |-  ( ( { A }  i^i  ( C  \  { A } ) )  =  (/) 
<->  ( { <. A ,  B >. }  |`  ( C  \  { A }
) )  =  (/) )
104, 9mpbi 199 . . . . . 6  |-  ( {
<. A ,  B >. }  |`  ( C  \  { A } ) )  =  (/)
11 residm 4986 . . . . . 6  |-  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A } ) )
1210, 11uneq12i 3327 . . . . 5  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  (
(/)  u.  ( F  |`  ( C  \  { A } ) ) )
13 uncom 3319 . . . . 5  |-  ( (/)  u.  ( F  |`  ( C  \  { A }
) ) )  =  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )
14 un0 3479 . . . . 5  |-  ( ( F  |`  ( C  \  { A } ) )  u.  (/) )  =  ( F  |`  ( C  \  { A }
) )
1512, 13, 143eqtri 2307 . . . 4  |-  ( ( { <. A ,  B >. }  |`  ( C  \  { A } ) )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  ( C  \  { A } ) ) )  =  ( F  |`  ( C  \  { A } ) )
162, 3, 153eqtri 2307 . . 3  |-  ( G  |`  ( C  \  { A } ) )  =  ( F  |`  ( C  \  { A }
) )
1716fveq1i 5526 . 2  |-  ( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( ( F  |`  ( C  \  { A } ) ) `  D )
18 fvres 5542 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( G  |`  ( C  \  { A } ) ) `  D )  =  ( G `  D ) )
19 fvres 5542 . 2  |-  ( D  e.  ( C  \  { A } )  -> 
( ( F  |`  ( C  \  { A } ) ) `  D )  =  ( F `  D ) )
2017, 18, 193eqtr3a 2339 1  |-  ( D  e.  ( C  \  { A } )  -> 
( G `  D
)  =  ( F `
 D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   <.cop 3643    |` cres 4691    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  facnn  11290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator