MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp2 Unicode version

Theorem fvtp2 5741
Description: The second value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp2.1  |-  B  e. 
_V
fvtp2.4  |-  E  e. 
_V
Assertion
Ref Expression
fvtp2  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  B
)  =  E )

Proof of Theorem fvtp2
StepHypRef Expression
1 tprot 3735 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. }
21fveq1i 5542 . 2  |-  ( {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } `
 B )  =  ( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)
3 necom 2540 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 fvtp2.1 . . . . 5  |-  B  e. 
_V
5 fvtp2.4 . . . . 5  |-  E  e. 
_V
64, 5fvtp1 5740 . . . 4  |-  ( ( B  =/=  C  /\  B  =/=  A )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)  =  E )
76ancoms 439 . . 3  |-  ( ( B  =/=  A  /\  B  =/=  C )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)  =  E )
83, 7sylanb 458 . 2  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { <. B ,  E >. ,  <. C ,  F >. ,  <. A ,  D >. } `  B
)  =  E )
92, 8syl5eq 2340 1  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. } `  B
)  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801   {ctp 3655   <.cop 3656   ` cfv 5271
This theorem is referenced by:  fvtp3  5742  rabren3dioph  27001  wlkntrllem4  28348  constr3lem5  28394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fv 5279
  Copyright terms: Public domain W3C validator