Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvtransport Unicode version

Theorem fvtransport 24655
Description: Calculate the value of the TransportTo function. This function takes four points,  A through  D, where  C and  D are distinct. It then returns the point that extends  C D by the length of  A B. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvtransport  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D ) )  -> 
( <. A ,  B >.TransportTo <. C ,  D >. )  =  ( iota_ r  e.  ( EE `  N
) ( D  Btwn  <. C ,  r >.  /\ 
<. D ,  r >.Cgr <. A ,  B >. ) ) )
Distinct variable groups:    N, r    A, r    B, r    C, r    D, r

Proof of Theorem fvtransport
Dummy variables  n  p  q  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 5861 . 2  |-  ( <. A ,  B >.TransportTo <. C ,  D >. )  =  (TransportTo `  <. <. A ,  B >. ,  <. C ,  D >. >. )
2 opelxpi 4721 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  ->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
323ad2ant1 976 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
4 opelxpi 4721 . . . . . . 7  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  ->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
543ad2ant2 977 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) )
6 simp3 957 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  C  =/=  D )
7 op1stg 6132 . . . . . . . 8  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 1st `  <. C ,  D >. )  =  C )
873ad2ant2 977 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  ( 1st `  <. C ,  D >. )  =  C )
9 op2ndg 6133 . . . . . . . 8  |-  ( ( C  e.  ( EE
`  N )  /\  D  e.  ( EE `  N ) )  -> 
( 2nd `  <. C ,  D >. )  =  D )
1093ad2ant2 977 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  ( 2nd `  <. C ,  D >. )  =  D )
116, 8, 103netr4d 2473 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) )
123, 5, 113jca 1132 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) ) )
138opeq1d 3802 . . . . . . . . 9  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  <. ( 1st `  <. C ,  D >. ) ,  r >.  =  <. C ,  r
>. )
1410, 13breq12d 4036 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  (
( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  <->  D  Btwn  <. C ,  r >. ) )
1510opeq1d 3802 . . . . . . . . 9  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  <. ( 2nd `  <. C ,  D >. ) ,  r >.  =  <. D ,  r
>. )
1615breq1d 4033 . . . . . . . 8  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  ( <. ( 2nd `  <. C ,  D >. ) ,  r >.Cgr <. A ,  B >. 
<-> 
<. D ,  r >.Cgr <. A ,  B >. ) )
1714, 16anbi12d 691 . . . . . . 7  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  (
( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. )  <->  ( D  Btwn  <. C ,  r >.  /\ 
<. D ,  r >.Cgr <. A ,  B >. ) ) )
1817riotabidv 6306 . . . . . 6  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  ( iota_ r  e.  ( EE
`  N ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) ) )
1918eqcomd 2288 . . . . 5  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  ( iota_ r  e.  ( EE
`  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  N ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )
2012, 19jca 518 . . . 4  |-  ( ( ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D )  ->  (
( <. A ,  B >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  <. C ,  D >.  e.  ( ( EE `  N
)  X.  ( EE
`  N ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  N ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
21 fveq2 5525 . . . . . . . . 9  |-  ( n  =  N  ->  ( EE `  n )  =  ( EE `  N
) )
2221, 21xpeq12d 4714 . . . . . . . 8  |-  ( n  =  N  ->  (
( EE `  n
)  X.  ( EE
`  n ) )  =  ( ( EE
`  N )  X.  ( EE `  N
) ) )
2322eleq2d 2350 . . . . . . 7  |-  ( n  =  N  ->  ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
2422eleq2d 2350 . . . . . . 7  |-  ( n  =  N  ->  ( <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) ) ) )
2523, 243anbi12d 1253 . . . . . 6  |-  ( n  =  N  ->  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  <->  ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
) ) )
2621riotaeqdv 6305 . . . . . . 7  |-  ( n  =  N  ->  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  N ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )
2726eqeq2d 2294 . . . . . 6  |-  ( n  =  N  ->  (
( iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) )  <->  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  N ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
2825, 27anbi12d 691 . . . . 5  |-  ( n  =  N  ->  (
( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE
`  N )  X.  ( EE `  N
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) )  /\  ( iota_ r  e.  ( EE
`  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  N ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) ) )
2928rspcev 2884 . . . 4  |-  ( ( N  e.  NN  /\  ( ( <. A ,  B >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  <. C ,  D >.  e.  ( ( EE `  N )  X.  ( EE `  N ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  N ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
3020, 29sylan2 460 . . 3  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D ) )  ->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
31 df-br 4024 . . . . 5  |-  ( <. <. A ,  B >. , 
<. C ,  D >. >.TransportTo (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  <->  <. <. <. A ,  B >. ,  <. C ,  D >. >. ,  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) ) >.  e. TransportTo )
32 df-transport 24653 . . . . . 6  |- TransportTo  =  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }
3332eleq2i 2347 . . . . 5  |-  ( <. <. <. A ,  B >. ,  <. C ,  D >. >. ,  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) ) >.  e. TransportTo  <->  <. <. <. A ,  B >. ,  <. C ,  D >. >. ,  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) ) >.  e.  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) } )
34 opex 4237 . . . . . 6  |-  <. A ,  B >.  e.  _V
35 opex 4237 . . . . . 6  |-  <. C ,  D >.  e.  _V
36 riotaex 6308 . . . . . 6  |-  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  e.  _V
37 eleq1 2343 . . . . . . . . . 10  |-  ( p  =  <. A ,  B >.  ->  ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
38373anbi1d 1256 . . . . . . . . 9  |-  ( p  =  <. A ,  B >.  ->  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) ) ) )
39 breq2 4027 . . . . . . . . . . . 12  |-  ( p  =  <. A ,  B >.  ->  ( <. ( 2nd `  q ) ,  r >.Cgr p  <->  <. ( 2nd `  q ) ,  r
>.Cgr <. A ,  B >. ) )
4039anbi2d 684 . . . . . . . . . . 11  |-  ( p  =  <. A ,  B >.  ->  ( ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p )  <->  ( ( 2nd `  q )  Btwn  <.
( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr <. A ,  B >. ) ) )
4140riotabidv 6306 . . . . . . . . . 10  |-  ( p  =  <. A ,  B >.  ->  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) )  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr <. A ,  B >. ) ) )
4241eqeq2d 2294 . . . . . . . . 9  |-  ( p  =  <. A ,  B >.  ->  ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) )  <->  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr <. A ,  B >. ) ) ) )
4338, 42anbi12d 691 . . . . . . . 8  |-  ( p  =  <. A ,  B >.  ->  ( ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr p ) ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr <. A ,  B >. ) ) ) ) )
4443rexbidv 2564 . . . . . . 7  |-  ( p  =  <. A ,  B >.  ->  ( E. n  e.  NN  ( ( p  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n )  X.  ( EE `  n
) )  /\  ( 1st `  q )  =/=  ( 2nd `  q
) )  /\  x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr <. A ,  B >. ) ) ) ) )
45 eleq1 2343 . . . . . . . . . 10  |-  ( q  =  <. C ,  D >.  ->  ( q  e.  ( ( EE `  n )  X.  ( EE `  n ) )  <->  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) ) ) )
46 fveq2 5525 . . . . . . . . . . 11  |-  ( q  =  <. C ,  D >.  ->  ( 1st `  q
)  =  ( 1st `  <. C ,  D >. ) )
47 fveq2 5525 . . . . . . . . . . 11  |-  ( q  =  <. C ,  D >.  ->  ( 2nd `  q
)  =  ( 2nd `  <. C ,  D >. ) )
4846, 47neeq12d 2461 . . . . . . . . . 10  |-  ( q  =  <. C ,  D >.  ->  ( ( 1st `  q )  =/=  ( 2nd `  q )  <->  ( 1st ` 
<. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
) )
4945, 483anbi23d 1255 . . . . . . . . 9  |-  ( q  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  <->  ( <. A ,  B >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) ) ) )
5046opeq1d 3802 . . . . . . . . . . . . 13  |-  ( q  =  <. C ,  D >.  ->  <. ( 1st `  q
) ,  r >.  =  <. ( 1st `  <. C ,  D >. ) ,  r >. )
5147, 50breq12d 4036 . . . . . . . . . . . 12  |-  ( q  =  <. C ,  D >.  ->  ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  <->  ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >. )
)
5247opeq1d 3802 . . . . . . . . . . . . 13  |-  ( q  =  <. C ,  D >.  ->  <. ( 2nd `  q
) ,  r >.  =  <. ( 2nd `  <. C ,  D >. ) ,  r >. )
5352breq1d 4033 . . . . . . . . . . . 12  |-  ( q  =  <. C ,  D >.  ->  ( <. ( 2nd `  q ) ,  r >.Cgr <. A ,  B >.  <->  <. ( 2nd `  <. C ,  D >. ) ,  r >.Cgr <. A ,  B >. ) )
5451, 53anbi12d 691 . . . . . . . . . . 11  |-  ( q  =  <. C ,  D >.  ->  ( ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr <. A ,  B >. )  <-> 
( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )
5554riotabidv 6306 . . . . . . . . . 10  |-  ( q  =  <. C ,  D >.  ->  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  q )  Btwn  <. ( 1st `  q ) ,  r >.  /\  <. ( 2nd `  q ) ,  r >.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )
5655eqeq2d 2294 . . . . . . . . 9  |-  ( q  =  <. C ,  D >.  ->  ( x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q
)  Btwn  <. ( 1st `  q ) ,  r
>.  /\  <. ( 2nd `  q
) ,  r >.Cgr <. A ,  B >. ) )  <->  x  =  ( iota_ r  e.  ( EE
`  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
5749, 56anbi12d 691 . . . . . . . 8  |-  ( q  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr <. A ,  B >. ) ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) )  /\  x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r >.Cgr <. A ,  B >. ) ) ) ) )
5857rexbidv 2564 . . . . . . 7  |-  ( q  =  <. C ,  D >.  ->  ( E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr <. A ,  B >. ) ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) )  /\  x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r >.Cgr <. A ,  B >. ) ) ) ) )
59 eqeq1 2289 . . . . . . . . 9  |-  ( x  =  ( iota_ r  e.  ( EE `  N
) ( D  Btwn  <. C ,  r >.  /\ 
<. D ,  r >.Cgr <. A ,  B >. ) )  ->  ( x  =  ( iota_ r  e.  ( EE `  n
) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r >.Cgr <. A ,  B >. ) )  <->  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
6059anbi2d 684 . . . . . . . 8  |-  ( x  =  ( iota_ r  e.  ( EE `  N
) ( D  Btwn  <. C ,  r >.  /\ 
<. D ,  r >.Cgr <. A ,  B >. ) )  ->  ( (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )  <->  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) )  /\  ( iota_ r  e.  ( EE
`  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) ) )
6160rexbidv 2564 . . . . . . 7  |-  ( x  =  ( iota_ r  e.  ( EE `  N
) ( D  Btwn  <. C ,  r >.  /\ 
<. D ,  r >.Cgr <. A ,  B >. ) )  ->  ( E. n  e.  NN  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) )  /\  ( iota_ r  e.  ( EE
`  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) ) )
6244, 58, 61eloprabg 5935 . . . . . 6  |-  ( (
<. A ,  B >.  e. 
_V  /\  <. C ,  D >.  e.  _V  /\  ( iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  e.  _V )  ->  ( <. <. <. A ,  B >. ,  <. C ,  D >. >. ,  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) ) >.  e.  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) ) )
6334, 35, 36, 62mp3an 1277 . . . . 5  |-  ( <. <. <. A ,  B >. ,  <. C ,  D >. >. ,  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) ) >.  e.  { <. <. p ,  q
>. ,  x >.  |  E. n  e.  NN  ( ( p  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  q  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  q
)  =/=  ( 2nd `  q ) )  /\  x  =  ( iota_ r  e.  ( EE `  n ) ( ( 2nd `  q ) 
Btwn  <. ( 1st `  q
) ,  r >.  /\  <. ( 2nd `  q
) ,  r >.Cgr p ) ) ) }  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
6431, 33, 633bitri 262 . . . 4  |-  ( <. <. A ,  B >. , 
<. C ,  D >. >.TransportTo (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  <->  E. n  e.  NN  ( ( <. A ,  B >.  e.  ( ( EE `  n )  X.  ( EE `  n ) )  /\  <. C ,  D >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. ) )  /\  ( iota_ r  e.  ( EE
`  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) ) )
65 funtransport 24654 . . . . 5  |-  Fun TransportTo
66 funbrfv 5561 . . . . 5  |-  ( Fun TransportTo  -> 
( <. <. A ,  B >. ,  <. C ,  D >. >.TransportTo ( iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  ->  (TransportTo ` 
<. <. A ,  B >. ,  <. C ,  D >. >. )  =  (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) ) ) )
6765, 66ax-mp 8 . . . 4  |-  ( <. <. A ,  B >. , 
<. C ,  D >. >.TransportTo (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) )  ->  (TransportTo ` 
<. <. A ,  B >. ,  <. C ,  D >. >. )  =  (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) ) )
6864, 67sylbir 204 . . 3  |-  ( E. n  e.  NN  (
( <. A ,  B >.  e.  ( ( EE
`  n )  X.  ( EE `  n
) )  /\  <. C ,  D >.  e.  ( ( EE `  n
)  X.  ( EE
`  n ) )  /\  ( 1st `  <. C ,  D >. )  =/=  ( 2nd `  <. C ,  D >. )
)  /\  ( iota_ r  e.  ( EE `  N ) ( D 
Btwn  <. C ,  r
>.  /\  <. D ,  r
>.Cgr <. A ,  B >. ) )  =  (
iota_ r  e.  ( EE `  n ) ( ( 2nd `  <. C ,  D >. )  Btwn  <. ( 1st `  <. C ,  D >. ) ,  r >.  /\  <. ( 2nd `  <. C ,  D >. ) ,  r
>.Cgr <. A ,  B >. ) ) )  -> 
(TransportTo `  <. <. A ,  B >. ,  <. C ,  D >. >. )  =  (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) ) )
6930, 68syl 15 . 2  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D ) )  -> 
(TransportTo `  <. <. A ,  B >. ,  <. C ,  D >. >. )  =  (
iota_ r  e.  ( EE `  N ) ( D  Btwn  <. C , 
r >.  /\  <. D , 
r >.Cgr <. A ,  B >. ) ) )
701, 69syl5eq 2327 1  |-  ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  C  =/=  D ) )  -> 
( <. A ,  B >.TransportTo <. C ,  D >. )  =  ( iota_ r  e.  ( EE `  N
) ( D  Btwn  <. C ,  r >.  /\ 
<. D ,  r >.Cgr <. A ,  B >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   _Vcvv 2788   <.cop 3643   class class class wbr 4023    X. cxp 4687   Fun wfun 5249   ` cfv 5255  (class class class)co 5858   {coprab 5859   1stc1st 6120   2ndc2nd 6121   iota_crio 6297   NNcn 9746   EEcee 24516    Btwn cbtwn 24517  Cgrccgr 24518  TransportToctransport 24652
This theorem is referenced by:  transportcl  24656  transportprops  24657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-z 10025  df-uz 10231  df-fz 10783  df-ee 24519  df-transport 24653
  Copyright terms: Public domain W3C validator