MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun Unicode version

Theorem fvun 5589
Description: Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011.)
Assertion
Ref Expression
fvun  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( F  u.  G ) `  A
)  =  ( ( F `  A )  u.  ( G `  A ) ) )

Proof of Theorem fvun
StepHypRef Expression
1 funun 5296 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
2 funfv 5586 . . 3  |-  ( Fun  ( F  u.  G
)  ->  ( ( F  u.  G ) `  A )  =  U. ( ( F  u.  G ) " { A } ) )
31, 2syl 15 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( F  u.  G ) `  A
)  =  U. (
( F  u.  G
) " { A } ) )
4 imaundir 5094 . . . 4  |-  ( ( F  u.  G )
" { A }
)  =  ( ( F " { A } )  u.  ( G " { A }
) )
54a1i 10 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( F  u.  G ) " { A } )  =  ( ( F " { A } )  u.  ( G " { A }
) ) )
65unieqd 3838 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  U. ( ( F  u.  G ) " { A } )  =  U. ( ( F " { A } )  u.  ( G " { A } ) ) )
7 uniun 3846 . . 3  |-  U. (
( F " { A } )  u.  ( G " { A }
) )  =  ( U. ( F " { A } )  u. 
U. ( G " { A } ) )
8 funfv 5586 . . . . . . 7  |-  ( Fun 
F  ->  ( F `  A )  =  U. ( F " { A } ) )
98eqcomd 2288 . . . . . 6  |-  ( Fun 
F  ->  U. ( F " { A }
)  =  ( F `
 A ) )
10 funfv 5586 . . . . . . 7  |-  ( Fun 
G  ->  ( G `  A )  =  U. ( G " { A } ) )
1110eqcomd 2288 . . . . . 6  |-  ( Fun 
G  ->  U. ( G " { A }
)  =  ( G `
 A ) )
129, 11anim12i 549 . . . . 5  |-  ( ( Fun  F  /\  Fun  G )  ->  ( U. ( F " { A } )  =  ( F `  A )  /\  U. ( G
" { A }
)  =  ( G `
 A ) ) )
1312adantr 451 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( U. ( F
" { A }
)  =  ( F `
 A )  /\  U. ( G " { A } )  =  ( G `  A ) ) )
14 uneq12 3324 . . . 4  |-  ( ( U. ( F " { A } )  =  ( F `  A
)  /\  U. ( G " { A }
)  =  ( G `
 A ) )  ->  ( U. ( F " { A }
)  u.  U. ( G " { A }
) )  =  ( ( F `  A
)  u.  ( G `
 A ) ) )
1513, 14syl 15 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( U. ( F
" { A }
)  u.  U. ( G " { A }
) )  =  ( ( F `  A
)  u.  ( G `
 A ) ) )
167, 15syl5eq 2327 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  U. ( ( F " { A } )  u.  ( G " { A } ) )  =  ( ( F `  A )  u.  ( G `  A )
) )
173, 6, 163eqtrd 2319 1  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( F  u.  G ) `  A
)  =  ( ( F `  A )  u.  ( G `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   U.cuni 3827   dom cdm 4689   "cima 4692   Fun wfun 5249   ` cfv 5255
This theorem is referenced by:  fvun1  5590  undifixp  6852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator