MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvun2 Unicode version

Theorem fvun2 5698
Description: The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
Assertion
Ref Expression
fvun2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( F  u.  G ) `  X
)  =  ( G `
 X ) )

Proof of Theorem fvun2
StepHypRef Expression
1 uncom 3407 . . 3  |-  ( F  u.  G )  =  ( G  u.  F
)
21fveq1i 5633 . 2  |-  ( ( F  u.  G ) `
 X )  =  ( ( G  u.  F ) `  X
)
3 incom 3449 . . . . . 6  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43eqeq1i 2373 . . . . 5  |-  ( ( A  i^i  B )  =  (/)  <->  ( B  i^i  A )  =  (/) )
54anbi1i 676 . . . 4  |-  ( ( ( A  i^i  B
)  =  (/)  /\  X  e.  B )  <->  ( ( B  i^i  A )  =  (/)  /\  X  e.  B
) )
6 fvun1 5697 . . . 4  |-  ( ( G  Fn  B  /\  F  Fn  A  /\  ( ( B  i^i  A )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
75, 6syl3an3b 1221 . . 3  |-  ( ( G  Fn  B  /\  F  Fn  A  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
873com12 1156 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( G  u.  F ) `  X
)  =  ( G `
 X ) )
92, 8syl5eq 2410 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( ( A  i^i  B )  =  (/)  /\  X  e.  B ) )  -> 
( ( F  u.  G ) `  X
)  =  ( G `
 X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    u. cun 3236    i^i cin 3237   (/)c0 3543    Fn wfn 5353   ` cfv 5358
This theorem is referenced by:  fveqf1o  5929  xpsc1  13673  ptunhmeo  17716  isoun  23492  cvmliftlem4  24422  vdgrun  24480  fullfunfv  25227  axlowdimlem9  25320  axlowdimlem12  25323  axlowdimlem17  25328  constr3lem4  27773  vdgreun  27811
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-fv 5366
  Copyright terms: Public domain W3C validator