MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz1f1o Unicode version

Theorem fz1f1o 12280
Description: A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
Assertion
Ref Expression
fz1f1o  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
Distinct variable group:    A, f

Proof of Theorem fz1f1o
StepHypRef Expression
1 hashcl 11443 . . . 4  |-  ( A  e.  Fin  ->  ( # `
 A )  e. 
NN0 )
2 elnn0 10059 . . . 4  |-  ( (
# `  A )  e.  NN0  <->  ( ( # `  A )  e.  NN  \/  ( # `  A
)  =  0 ) )
31, 2sylib 188 . . 3  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  \/  ( # `
 A )  =  0 ) )
43orcomd 377 . 2  |-  ( A  e.  Fin  ->  (
( # `  A )  =  0  \/  ( # `
 A )  e.  NN ) )
5 hasheq0 11446 . . 3  |-  ( A  e.  Fin  ->  (
( # `  A )  =  0  <->  A  =  (/) ) )
6 hashfz1 11438 . . . . . . 7  |-  ( (
# `  A )  e.  NN0  ->  ( # `  (
1 ... ( # `  A
) ) )  =  ( # `  A
) )
71, 6syl 15 . . . . . 6  |-  ( A  e.  Fin  ->  ( # `
 ( 1 ... ( # `  A
) ) )  =  ( # `  A
) )
8 fzfi 11126 . . . . . . 7  |-  ( 1 ... ( # `  A
) )  e.  Fin
9 hashen 11439 . . . . . . 7  |-  ( ( ( 1 ... ( # `
 A ) )  e.  Fin  /\  A  e.  Fin )  ->  (
( # `  ( 1 ... ( # `  A
) ) )  =  ( # `  A
)  <->  ( 1 ... ( # `  A
) )  ~~  A
) )
108, 9mpan 651 . . . . . 6  |-  ( A  e.  Fin  ->  (
( # `  ( 1 ... ( # `  A
) ) )  =  ( # `  A
)  <->  ( 1 ... ( # `  A
) )  ~~  A
) )
117, 10mpbid 201 . . . . 5  |-  ( A  e.  Fin  ->  (
1 ... ( # `  A
) )  ~~  A
)
12 bren 6959 . . . . 5  |-  ( ( 1 ... ( # `  A ) )  ~~  A 
<->  E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )
1311, 12sylib 188 . . . 4  |-  ( A  e.  Fin  ->  E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
1413biantrud 493 . . 3  |-  ( A  e.  Fin  ->  (
( # `  A )  e.  NN  <->  ( ( # `
 A )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) ) )
155, 14orbi12d 690 . 2  |-  ( A  e.  Fin  ->  (
( ( # `  A
)  =  0  \/  ( # `  A
)  e.  NN )  <-> 
( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) ) )
164, 15mpbid 201 1  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1541    = wceq 1642    e. wcel 1710   (/)c0 3531   class class class wbr 4104   -1-1-onto->wf1o 5336   ` cfv 5337  (class class class)co 5945    ~~ cen 6948   Fincfn 6951   0cc0 8827   1c1 8828   NNcn 9836   NN0cn0 10057   ...cfz 10874   #chash 11430
This theorem is referenced by:  sumz  12292  fsumf1o  12293  fsumss  12295  fsumcl2lem  12301  fsumadd  12308  fsummulc2  12343  fsumconst  12349  fsumrelem  12362  gsumval3eu  15289  gsumzres  15293  gsumzcl  15294  gsumzf1o  15295  gsumzaddlem  15302  gsumconst  15308  gsumzmhm  15309  gsumzoppg  15315  gsumfsum  16545  prod1  24571  fprodf1o  24573  fprodss  24575  fprodcl2lem  24577  fprodmul  24585  fproddiv  24586  fprodconst  24603  fprodn0  24604  stoweidlem35  27107  stoweidlem39  27111
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-card 7662  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-hash 11431
  Copyright terms: Public domain W3C validator