MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzaddel Structured version   Unicode version

Theorem fzaddel 11087
Description: Membership of a sum in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005.)
Assertion
Ref Expression
fzaddel  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )

Proof of Theorem fzaddel
StepHypRef Expression
1 simpl 444 . . . . 5  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  J  e.  ZZ )
2 zaddcl 10317 . . . . 5  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  +  K
)  e.  ZZ )
31, 22thd 232 . . . 4  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  e.  ZZ  <->  ( J  +  K )  e.  ZZ ) )
43adantl 453 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ZZ  <->  ( J  +  K )  e.  ZZ ) )
5 zre 10286 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
6 zre 10286 . . . . . 6  |-  ( J  e.  ZZ  ->  J  e.  RR )
7 zre 10286 . . . . . 6  |-  ( K  e.  ZZ  ->  K  e.  RR )
8 leadd1 9496 . . . . . 6  |-  ( ( M  e.  RR  /\  J  e.  RR  /\  K  e.  RR )  ->  ( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K )
) )
95, 6, 7, 8syl3an 1226 . . . . 5  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K )
) )
1093expb 1154 . . . 4  |-  ( ( M  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K )
) )
1110adantlr 696 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( M  <_  J  <->  ( M  +  K )  <_  ( J  +  K ) ) )
12 zre 10286 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  RR )
13 leadd1 9496 . . . . . . 7  |-  ( ( J  e.  RR  /\  N  e.  RR  /\  K  e.  RR )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
146, 12, 7, 13syl3an 1226 . . . . . 6  |-  ( ( J  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
15143com12 1157 . . . . 5  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
16153expb 1154 . . . 4  |-  ( ( N  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K )
) )
1716adantll 695 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  <_  N  <->  ( J  +  K )  <_  ( N  +  K ) ) )
184, 11, 173anbi123d 1254 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  e.  ZZ  /\  M  <_  J  /\  J  <_  N
)  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
19 elfz1 11048 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( J  e.  ( M ... N )  <-> 
( J  e.  ZZ  /\  M  <_  J  /\  J  <_  N ) ) )
2019adantr 452 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  e.  ZZ  /\  M  <_  J  /\  J  <_  N ) ) )
21 zaddcl 10317 . . . . 5  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K
)  e.  ZZ )
22 zaddcl 10317 . . . . 5  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
23 elfz1 11048 . . . . 5  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( J  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2421, 22, 23syl2an 464 . . . 4  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  +  K )  e.  ( ( M  +  K
) ... ( N  +  K ) )  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2524anandirs 805 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( J  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2625adantrl 697 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  +  K )  e.  ( ( M  +  K
) ... ( N  +  K ) )  <->  ( ( J  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( J  +  K
)  /\  ( J  +  K )  <_  ( N  +  K )
) ) )
2718, 20, 263bitr4d 277 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  e.  ( M ... N )  <-> 
( J  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1725   class class class wbr 4212  (class class class)co 6081   RRcr 8989    + caddc 8993    <_ cle 9121   ZZcz 10282   ...cfz 11043
This theorem is referenced by:  fzsubel  11088  sermono  11355  bcp1nk  11608  fsumshft  12563  binomlem  12608  vdwapun  13342  ballotlemfc0  24750  ballotlemfcc  24751  fprodser  25275  fprodshft  25300  fdc  26449  stoweidlem26  27751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-fz 11044
  Copyright terms: Public domain W3C validator