MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzass4 Unicode version

Theorem fzass4 11022
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 731 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
2 simprl 733 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
31, 2jca 519 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
4 uztrn 10434 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  B  e.  ( ZZ>= `  A )
)  ->  C  e.  ( ZZ>= `  A )
)
54ancoms 440 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  ->  C  e.  ( ZZ>= `  A )
)
65ad2ant2r 728 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  A ) )
7 simprr 734 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
83, 6, 7jca32 522 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
9 simpll 731 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
10 uztrn 10434 . . . . . . 7  |-  ( ( D  e.  ( ZZ>= `  C )  /\  C  e.  ( ZZ>= `  B )
)  ->  D  e.  ( ZZ>= `  B )
)
1110ancoms 440 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>= `  C )
)  ->  D  e.  ( ZZ>= `  B )
)
1211ad2ant2l 727 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  B ) )
139, 12jca 519 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
14 simplr 732 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
15 simprr 734 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
1613, 14, 15jca32 522 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
178, 16impbii 181 . 2  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  <-> 
( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) )  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
18 elfzuzb 10985 . . 3  |-  ( B  e.  ( A ... D )  <->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
19 elfzuzb 10985 . . 3  |-  ( C  e.  ( B ... D )  <->  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) )
2018, 19anbi12i 679 . 2  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
21 elfzuzb 10985 . . 3  |-  ( B  e.  ( A ... C )  <->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
22 elfzuzb 10985 . . 3  |-  ( C  e.  ( A ... D )  <->  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) )
2321, 22anbi12i 679 . 2  |-  ( ( B  e.  ( A ... C )  /\  C  e.  ( A ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
2417, 20, 233bitr4i 269 1  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    e. wcel 1717   ` cfv 5394  (class class class)co 6020   ZZ>=cuz 10420   ...cfz 10975
This theorem is referenced by:  ccatswrd  11700  splfv1  11711
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-pre-lttri 8997  ax-pre-lttrn 8998
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-neg 9226  df-z 10215  df-uz 10421  df-fz 10976
  Copyright terms: Public domain W3C validator