MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzass4 Structured version   Unicode version

Theorem fzass4 11082
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 731 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
2 simprl 733 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
31, 2jca 519 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
4 uztrn 10494 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  B  e.  ( ZZ>= `  A )
)  ->  C  e.  ( ZZ>= `  A )
)
54ancoms 440 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  ->  C  e.  ( ZZ>= `  A )
)
65ad2ant2r 728 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  A ) )
7 simprr 734 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
83, 6, 7jca32 522 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
9 simpll 731 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  B  e.  (
ZZ>= `  A ) )
10 uztrn 10494 . . . . . . 7  |-  ( ( D  e.  ( ZZ>= `  C )  /\  C  e.  ( ZZ>= `  B )
)  ->  D  e.  ( ZZ>= `  B )
)
1110ancoms 440 . . . . . 6  |-  ( ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>= `  C )
)  ->  D  e.  ( ZZ>= `  B )
)
1211ad2ant2l 727 . . . . 5  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  B ) )
139, 12jca 519 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
14 simplr 732 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  C  e.  (
ZZ>= `  B ) )
15 simprr 734 . . . 4  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  D  e.  (
ZZ>= `  C ) )
1613, 14, 15jca32 522 . . 3  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  A )  /\  D  e.  ( ZZ>= `  C ) ) )  ->  ( ( B  e.  ( ZZ>= `  A
)  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
178, 16impbii 181 . 2  |-  ( ( ( B  e.  (
ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B ) )  /\  ( C  e.  ( ZZ>=
`  B )  /\  D  e.  ( ZZ>= `  C ) ) )  <-> 
( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) )  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
18 elfzuzb 11045 . . 3  |-  ( B  e.  ( A ... D )  <->  ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  B ) ) )
19 elfzuzb 11045 . . 3  |-  ( C  e.  ( B ... D )  <->  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) )
2018, 19anbi12i 679 . 2  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  B )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
21 elfzuzb 11045 . . 3  |-  ( B  e.  ( A ... C )  <->  ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>=
`  B ) ) )
22 elfzuzb 11045 . . 3  |-  ( C  e.  ( A ... D )  <->  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) )
2321, 22anbi12i 679 . 2  |-  ( ( B  e.  ( A ... C )  /\  C  e.  ( A ... D ) )  <->  ( ( B  e.  ( ZZ>= `  A )  /\  C  e.  ( ZZ>= `  B )
)  /\  ( C  e.  ( ZZ>= `  A )  /\  D  e.  ( ZZ>=
`  C ) ) ) )
2417, 20, 233bitr4i 269 1  |-  ( ( B  e.  ( A ... D )  /\  C  e.  ( B ... D ) )  <->  ( B  e.  ( A ... C
)  /\  C  e.  ( A ... D ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    e. wcel 1725   ` cfv 5446  (class class class)co 6073   ZZ>=cuz 10480   ...cfz 11035
This theorem is referenced by:  ccatswrd  11765  splfv1  11776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-neg 9286  df-z 10275  df-uz 10481  df-fz 11036
  Copyright terms: Public domain W3C validator