MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzdisj Unicode version

Theorem fzdisj 10817
Description: Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
Assertion
Ref Expression
fzdisj  |-  ( K  <  M  ->  (
( J ... K
)  i^i  ( M ... N ) )  =  (/) )

Proof of Theorem fzdisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3358 . . . 4  |-  ( x  e.  ( ( J ... K )  i^i  ( M ... N
) )  <->  ( x  e.  ( J ... K
)  /\  x  e.  ( M ... N ) ) )
2 elfzel1 10797 . . . . . . . 8  |-  ( x  e.  ( M ... N )  ->  M  e.  ZZ )
32adantl 452 . . . . . . 7  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  e.  ZZ )
43zred 10117 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  e.  RR )
5 elfzelz 10798 . . . . . . . 8  |-  ( x  e.  ( M ... N )  ->  x  e.  ZZ )
65zred 10117 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  x  e.  RR )
76adantl 452 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  x  e.  RR )
8 elfzel2 10796 . . . . . . . 8  |-  ( x  e.  ( J ... K )  ->  K  e.  ZZ )
98adantr 451 . . . . . . 7  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  K  e.  ZZ )
109zred 10117 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  K  e.  RR )
11 elfzle1 10799 . . . . . . 7  |-  ( x  e.  ( M ... N )  ->  M  <_  x )
1211adantl 452 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  <_  x )
13 elfzle2 10800 . . . . . . 7  |-  ( x  e.  ( J ... K )  ->  x  <_  K )
1413adantr 451 . . . . . 6  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  x  <_  K )
154, 7, 10, 12, 14letrd 8973 . . . . 5  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  M  <_  K )
164, 10lenltd 8965 . . . . 5  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  -> 
( M  <_  K  <->  -.  K  <  M ) )
1715, 16mpbid 201 . . . 4  |-  ( ( x  e.  ( J ... K )  /\  x  e.  ( M ... N ) )  ->  -.  K  <  M )
181, 17sylbi 187 . . 3  |-  ( x  e.  ( ( J ... K )  i^i  ( M ... N
) )  ->  -.  K  <  M )
1918con2i 112 . 2  |-  ( K  <  M  ->  -.  x  e.  ( ( J ... K )  i^i  ( M ... N
) ) )
2019eq0rdv 3489 1  |-  ( K  <  M  ->  (
( J ... K
)  i^i  ( M ... N ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151   (/)c0 3455   class class class wbr 4023  (class class class)co 5858   RRcr 8736    < clt 8867    <_ cle 8868   ZZcz 10024   ...cfz 10782
This theorem is referenced by:  fsumm1  12216  fsum1p  12218  o1fsum  12271  climcndslem1  12308  climcndslem2  12309  mertenslem1  12340  prmreclem5  12967  strleun  13238  uniioombllem3  18940  mtest  19781  birthdaylem2  20247  fsumharmonic  20305  ftalem5  20314  chtdif  20396  ppidif  20401  lgsquadlem2  20594  dchrisum0lem1b  20664  dchrisum0lem3  20668  pntrsumbnd2  20716  pntrlog2bndlem6  20732  pntpbnd2  20736  pntlemf  20754  ballotlemfrceq  23087  esumpmono  23447  axlowdimlem2  24571  axlowdimlem16  24585  clscnc  26010  fzdisjOLD  26446  eldioph2lem1  26839  stoweidlem11  27760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-neg 9040  df-z 10025  df-uz 10231  df-fz 10783
  Copyright terms: Public domain W3C validator