Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzdisjOLD Unicode version

Theorem fzdisjOLD 26446
Description: Condition for two finite intervals of integers to be disjoint. (Moved to fzdisj 10817 in main set.mm and may be deleted by mathbox owner, JM. --NM 16-Sep-2013.) (Contributed by Jeff Madsen, 17-Jun-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fzdisjOLD  |-  ( ( K  e.  A  /\  K  <  M )  -> 
( ( J ... K )  i^i  ( M ... N ) )  =  (/) )

Proof of Theorem fzdisjOLD
StepHypRef Expression
1 fzdisj 10817 . 2  |-  ( K  <  M  ->  (
( J ... K
)  i^i  ( M ... N ) )  =  (/) )
21adantl 452 1  |-  ( ( K  e.  A  /\  K  <  M )  -> 
( ( J ... K )  i^i  ( M ... N ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151   (/)c0 3455   class class class wbr 4023  (class class class)co 5858    < clt 8867   ...cfz 10782
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-neg 9040  df-z 10025  df-uz 10231  df-fz 10783
  Copyright terms: Public domain W3C validator