MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzen2 Structured version   Unicode version

Theorem fzen2 11339
Description: The cardinality of a finite set of sequential integers with arbitrary endpoints. (Contributed by Mario Carneiro, 13-Feb-2014.)
Hypothesis
Ref Expression
fzennn.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
Assertion
Ref Expression
fzen2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )

Proof of Theorem fzen2
StepHypRef Expression
1 eluzel2 10524 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 10527 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 1z 10342 . . . . 5  |-  1  e.  ZZ
4 zsubcl 10350 . . . . 5  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ )  ->  ( 1  -  M
)  e.  ZZ )
53, 1, 4sylancr 646 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1  -  M )  e.  ZZ )
6 fzen 11103 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  (
1  -  M )  e.  ZZ )  -> 
( M ... N
)  ~~  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) ) )
71, 2, 5, 6syl3anc 1185 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M ) ) ) )
81zcnd 10407 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  CC )
9 ax-1cn 9079 . . . . 5  |-  1  e.  CC
10 pncan3 9344 . . . . 5  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  ( 1  -  M ) )  =  1 )
118, 9, 10sylancl 645 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  +  ( 1  -  M ) )  =  1 )
12 zcn 10318 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
13 zcn 10318 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 addsubass 9346 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC  /\  M  e.  CC )  ->  (
( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M
) ) )
159, 14mp3an2 1268 . . . . . . 7  |-  ( ( N  e.  CC  /\  M  e.  CC )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
1612, 13, 15syl2an 465 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  + 
1 )  -  M
)  =  ( N  +  ( 1  -  M ) ) )
172, 1, 16syl2anc 644 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  =  ( N  +  ( 1  -  M ) ) )
1817eqcomd 2447 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  ( 1  -  M ) )  =  ( ( N  + 
1 )  -  M
) )
1911, 18oveq12d 6128 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( M  +  ( 1  -  M ) ) ... ( N  +  ( 1  -  M
) ) )  =  ( 1 ... (
( N  +  1 )  -  M ) ) )
207, 19breqtrd 4261 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  (
1 ... ( ( N  +  1 )  -  M ) ) )
21 peano2uz 10561 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  M )
)
22 uznn0sub 10548 . . 3  |-  ( ( N  +  1 )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  1 )  -  M )  e. 
NN0 )
23 fzennn.1 . . . 4  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  0 )  |`  om )
2423fzennn 11338 . . 3  |-  ( ( ( N  +  1 )  -  M )  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2521, 22, 243syl 19 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( 1 ... ( ( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
26 entr 7188 . 2  |-  ( ( ( M ... N
)  ~~  ( 1 ... ( ( N  +  1 )  -  M ) )  /\  ( 1 ... (
( N  +  1 )  -  M ) )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
2720, 25, 26syl2anc 644 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  ~~  ( `' G `  ( ( N  +  1 )  -  M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727   _Vcvv 2962   class class class wbr 4237    e. cmpt 4291   omcom 4874   `'ccnv 4906    |` cres 4909   ` cfv 5483  (class class class)co 6110   reccrdg 6696    ~~ cen 7135   CCcc 9019   0cc0 9021   1c1 9022    + caddc 9024    - cmin 9322   NN0cn0 10252   ZZcz 10313   ZZ>=cuz 10519   ...cfz 11074
This theorem is referenced by:  fzfi  11342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-n0 10253  df-z 10314  df-uz 10520  df-fz 11075
  Copyright terms: Public domain W3C validator