MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzf Unicode version

Theorem fzf 10939
Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fzf  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ

Proof of Theorem fzf
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3344 . . . 4  |-  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } 
C_  ZZ
2 zex 10184 . . . . 5  |-  ZZ  e.  _V
32elpw2 4277 . . . 4  |-  ( { k  e.  ZZ  | 
( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ  <->  { k  e.  ZZ  | 
( m  <_  k  /\  k  <_  n ) }  C_  ZZ )
41, 3mpbir 200 . . 3  |-  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ
54rgen2w 2696 . 2  |-  A. m  e.  ZZ  A. n  e.  ZZ  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ
6 df-fz 10936 . . 3  |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_ 
k  /\  k  <_  n ) } )
76fmpt2 6318 . 2  |-  ( A. m  e.  ZZ  A. n  e.  ZZ  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ  <->  ... : ( ZZ 
X.  ZZ ) --> ~P ZZ )
85, 7mpbi 199 1  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
Colors of variables: wff set class
Syntax hints:    /\ wa 358    e. wcel 1715   A.wral 2628   {crab 2632    C_ wss 3238   ~Pcpw 3714   class class class wbr 4125    X. cxp 4790   -->wf 5354    <_ cle 9015   ZZcz 10175   ...cfz 10935
This theorem is referenced by:  elfz2  10942  fzoval  11031  gsumval2a  14669  gsumval3  15401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-neg 9187  df-z 10176  df-fz 10936
  Copyright terms: Public domain W3C validator