MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzf Structured version   Unicode version

Theorem fzf 11052
Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fzf  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ

Proof of Theorem fzf
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3430 . . . 4  |-  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } 
C_  ZZ
2 zex 10296 . . . . 5  |-  ZZ  e.  _V
32elpw2 4367 . . . 4  |-  ( { k  e.  ZZ  | 
( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ  <->  { k  e.  ZZ  | 
( m  <_  k  /\  k  <_  n ) }  C_  ZZ )
41, 3mpbir 202 . . 3  |-  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ
54rgen2w 2776 . 2  |-  A. m  e.  ZZ  A. n  e.  ZZ  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ
6 df-fz 11049 . . 3  |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_ 
k  /\  k  <_  n ) } )
76fmpt2 6421 . 2  |-  ( A. m  e.  ZZ  A. n  e.  ZZ  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  e.  ~P ZZ  <->  ... : ( ZZ 
X.  ZZ ) --> ~P ZZ )
85, 7mpbi 201 1  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
Colors of variables: wff set class
Syntax hints:    /\ wa 360    e. wcel 1726   A.wral 2707   {crab 2711    C_ wss 3322   ~Pcpw 3801   class class class wbr 4215    X. cxp 4879   -->wf 5453    <_ cle 9126   ZZcz 10287   ...cfz 11048
This theorem is referenced by:  elfz2  11055  fzoval  11146  gsumval2a  14787  gsumval3  15519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-neg 9299  df-z 10288  df-fz 11049
  Copyright terms: Public domain W3C validator