MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzn Unicode version

Theorem fzn 10826
Description: A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
Assertion
Ref Expression
fzn  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )

Proof of Theorem fzn
StepHypRef Expression
1 fzn0 10825 . . . 4  |-  ( ( M ... N )  =/=  (/)  <->  N  e.  ( ZZ>=
`  M ) )
2 eluz 10257 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
31, 2syl5bb 248 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M ... N )  =/=  (/)  <->  M  <_  N ) )
4 zre 10044 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  RR )
5 zre 10044 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
6 lenlt 8917 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <_  N  <->  -.  N  <  M ) )
74, 5, 6syl2an 463 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  -.  N  <  M ) )
83, 7bitr2d 245 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  N  < 
M  <->  ( M ... N )  =/=  (/) ) )
98necon4bbid 2524 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  ( M ... N )  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   (/)c0 3468   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   RRcr 8752    < clt 8883    <_ cle 8884   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798
This theorem is referenced by:  fz1n  10828  fz10  10830  fzsuc2  10858  isumsplit  12315  arisum2  12335  prmreclem4  12982  prmreclem5  12983  vdwap0  13039  abelthlem6  19828  log2ublem3  20260  ppi1  20418  cht1  20419  ppiublem2  20458  lgsdir2lem3  20580  fz0n  24112  bpoly0  24857  fdc  26558  mettrifi  26576  fzon  28212
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-neg 9056  df-z 10041  df-uz 10247  df-fz 10799
  Copyright terms: Public domain W3C validator