Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fznatpl1 Unicode version

Theorem fznatpl1 24108
Description: Shift membership in a finite sequence of naturals. (Contributed by Scott Fenton, 17-Jul-2013.)
Assertion
Ref Expression
fznatpl1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )

Proof of Theorem fznatpl1
StepHypRef Expression
1 1re 8853 . . . 4  |-  1  e.  RR
21a1i 10 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  e.  RR )
3 elfzelz 10814 . . . . . 6  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  ZZ )
43zred 10133 . . . . 5  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  e.  RR )
54adantl 452 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  I  e.  RR )
6 peano2re 9001 . . . 4  |-  ( I  e.  RR  ->  (
I  +  1 )  e.  RR )
75, 6syl 15 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  RR )
8 peano2re 9001 . . . . 5  |-  ( 1  e.  RR  ->  (
1  +  1 )  e.  RR )
92, 8syl 15 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  +  1 )  e.  RR )
102ltp1d 9703 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <  (
1  +  1 ) )
11 elfzle1 10815 . . . . . 6  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  1  <_  I )
1211adantl 452 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <_  I
)
13 leadd1 9258 . . . . . . 7  |-  ( ( 1  e.  RR  /\  I  e.  RR  /\  1  e.  RR )  ->  (
1  <_  I  <->  ( 1  +  1 )  <_ 
( I  +  1 ) ) )
141, 1, 13mp3an13 1268 . . . . . 6  |-  ( I  e.  RR  ->  (
1  <_  I  <->  ( 1  +  1 )  <_ 
( I  +  1 ) ) )
155, 14syl 15 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  <_  I 
<->  ( 1  +  1 )  <_  ( I  +  1 ) ) )
1612, 15mpbid 201 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( 1  +  1 )  <_  (
I  +  1 ) )
172, 9, 7, 10, 16ltletrd 8992 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <  (
I  +  1 ) )
182, 7, 17ltled 8983 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  1  <_  (
I  +  1 ) )
19 elfzle2 10816 . . . 4  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  I  <_  ( N  -  1 ) )
2019adantl 452 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  I  <_  ( N  -  1 ) )
21 nnz 10061 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
2221adantr 451 . . . . 5  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  N  e.  ZZ )
2322zred 10133 . . . 4  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  N  e.  RR )
24 leaddsub 9266 . . . . 5  |-  ( ( I  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( I  +  1 )  <_  N  <->  I  <_  ( N  -  1 ) ) )
251, 24mp3an2 1265 . . . 4  |-  ( ( I  e.  RR  /\  N  e.  RR )  ->  ( ( I  + 
1 )  <_  N  <->  I  <_  ( N  - 
1 ) ) )
265, 23, 25syl2anc 642 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  <_  N 
<->  I  <_  ( N  -  1 ) ) )
2720, 26mpbird 223 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  <_  N
)
283peano2zd 10136 . . . 4  |-  ( I  e.  ( 1 ... ( N  -  1 ) )  ->  (
I  +  1 )  e.  ZZ )
2928adantl 452 . . 3  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ZZ )
30 1z 10069 . . . 4  |-  1  e.  ZZ
31 elfz 10804 . . . 4  |-  ( ( ( I  +  1 )  e.  ZZ  /\  1  e.  ZZ  /\  N  e.  ZZ )  ->  (
( I  +  1 )  e.  ( 1 ... N )  <->  ( 1  <_  ( I  + 
1 )  /\  (
I  +  1 )  <_  N ) ) )
3230, 31mp3an2 1265 . . 3  |-  ( ( ( I  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( I  + 
1 )  e.  ( 1 ... N )  <-> 
( 1  <_  (
I  +  1 )  /\  ( I  + 
1 )  <_  N
) ) )
3329, 22, 32syl2anc 642 . 2  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( ( I  +  1 )  e.  ( 1 ... N
)  <->  ( 1  <_ 
( I  +  1 )  /\  ( I  +  1 )  <_  N ) ) )
3418, 27, 33mpbir2and 888 1  |-  ( ( N  e.  NN  /\  I  e.  ( 1 ... ( N  - 
1 ) ) )  ->  ( I  + 
1 )  e.  ( 1 ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752   1c1 8754    + caddc 8756    <_ cle 8884    - cmin 9053   NNcn 9762   ZZcz 10040   ...cfz 10798
This theorem is referenced by:  axlowdimlem10  24651  axlowdimlem14  24655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799
  Copyright terms: Public domain W3C validator