MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzodisj Structured version   Unicode version

Theorem fzodisj 11172
Description: Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzodisj  |-  ( ( A..^ B )  i^i  ( B..^ C ) )  =  (/)

Proof of Theorem fzodisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 disj1 3672 . 2  |-  ( ( ( A..^ B )  i^i  ( B..^ C
) )  =  (/)  <->  A. x ( x  e.  ( A..^ B )  ->  -.  x  e.  ( B..^ C ) ) )
2 elfzolt2 11153 . . . 4  |-  ( x  e.  ( A..^ B
)  ->  x  <  B )
3 elfzoelz 11145 . . . . . 6  |-  ( x  e.  ( A..^ B
)  ->  x  e.  ZZ )
43zred 10380 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  x  e.  RR )
5 elfzoel2 11144 . . . . . 6  |-  ( x  e.  ( A..^ B
)  ->  B  e.  ZZ )
65zred 10380 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  B  e.  RR )
74, 6ltnled 9225 . . . 4  |-  ( x  e.  ( A..^ B
)  ->  ( x  <  B  <->  -.  B  <_  x ) )
82, 7mpbid 203 . . 3  |-  ( x  e.  ( A..^ B
)  ->  -.  B  <_  x )
9 elfzole1 11152 . . 3  |-  ( x  e.  ( B..^ C
)  ->  B  <_  x )
108, 9nsyl 116 . 2  |-  ( x  e.  ( A..^ B
)  ->  -.  x  e.  ( B..^ C ) )
111, 10mpgbir 1560 1  |-  ( ( A..^ B )  i^i  ( B..^ C ) )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1653    e. wcel 1726    i^i cin 3321   (/)c0 3630   class class class wbr 4215  (class class class)co 6084    < clt 9125    <_ cle 9126  ..^cfzo 11140
This theorem is referenced by:  ccatval2  11751  pgpfaclem1  15644  dchrisumlem1  21188  dchrisumlem2  21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-fzo 11141
  Copyright terms: Public domain W3C validator