MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzospliti Structured version   Unicode version

Theorem fzospliti 11157
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzospliti  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )

Proof of Theorem fzospliti
StepHypRef Expression
1 zre 10278 . . . . . 6  |-  ( D  e.  ZZ  ->  D  e.  RR )
21adantl 453 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  RR )
3 elfzoelz 11132 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  A  e.  ZZ )
43adantr 452 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  ZZ )
54zred 10367 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  RR )
6 lelttric 9172 . . . . 5  |-  ( ( D  e.  RR  /\  A  e.  RR )  ->  ( D  <_  A  \/  A  <  D ) )
72, 5, 6syl2anc 643 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  \/  A  <  D ) )
87orcomd 378 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  \/  D  <_  A ) )
9 elfzole1 11139 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  B  <_  A )
109adantr 452 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  <_  A )
1110a1d 23 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  B  <_  A ) )
1211ancrd 538 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  <  D  ->  ( B  <_  A  /\  A  <  D ) ) )
13 elfzolt2 11140 . . . . . . 7  |-  ( A  e.  ( B..^ C
)  ->  A  <  C )
1413adantr 452 . . . . . 6  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  <  C )
1514a1d 23 . . . . 5  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  A  <  C ) )
1615ancld 537 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( D  <_  A  ->  ( D  <_  A  /\  A  <  C ) ) )
1712, 16orim12d 812 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  <  D  \/  D  <_  A )  ->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
188, 17mpd 15 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C
) ) )
19 elfzoel1 11130 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
2019adantr 452 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  ZZ )
21 simpr 448 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  ZZ )
22 elfzo 11134 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
234, 20, 21, 22syl3anc 1184 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  <->  ( B  <_  A  /\  A  < 
D ) ) )
24 elfzoel2 11131 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
2524adantr 452 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  ZZ )
26 elfzo 11134 . . . 4  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ  /\  C  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
274, 21, 25, 26syl3anc 1184 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( D..^ C )  <->  ( D  <_  A  /\  A  < 
C ) ) )
2823, 27orbi12d 691 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) )  <->  ( ( B  <_  A  /\  A  <  D )  \/  ( D  <_  A  /\  A  <  C ) ) ) )
2918, 28mpbird 224 1  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  e.  ( B..^ D )  \/  A  e.  ( D..^ C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    e. wcel 1725   class class class wbr 4204  (class class class)co 6073   RRcr 8981    < clt 9112    <_ cle 9113   ZZcz 10274  ..^cfzo 11127
This theorem is referenced by:  fzosplit  11158  ccatcl  11735  ccatass  11742  ccatswrd  11765  revccat  11790  ccatco  11796  dfphi2  13155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128
  Copyright terms: Public domain W3C validator