MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoss1 Unicode version

Theorem fzoss1 10896
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoss1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K..^ N )  C_  ( M..^ N ) )

Proof of Theorem fzoss1
StepHypRef Expression
1 sseq1 3199 . 2  |-  ( ( K..^ N )  =  (/)  ->  ( ( K..^ N )  C_  ( M..^ N )  <->  (/)  C_  ( M..^ N ) ) )
2 fzon0 10891 . . . 4  |-  ( ( K..^ N )  =/=  (/) 
<->  K  e.  ( K..^ N ) )
3 elfzoel2 10874 . . . 4  |-  ( K  e.  ( K..^ N
)  ->  N  e.  ZZ )
42, 3sylbi 187 . . 3  |-  ( ( K..^ N )  =/=  (/)  ->  N  e.  ZZ )
5 fzss1 10830 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... ( N  -  1 ) )  C_  ( M ... ( N  - 
1 ) ) )
65adantr 451 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K ... ( N  - 
1 ) )  C_  ( M ... ( N  -  1 ) ) )
7 fzoval 10876 . . . . 5  |-  ( N  e.  ZZ  ->  ( K..^ N )  =  ( K ... ( N  -  1 ) ) )
87adantl 452 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K..^ N )  =  ( K ... ( N  -  1 ) ) )
9 fzoval 10876 . . . . 5  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
109adantl 452 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
116, 8, 103sstr4d 3221 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K..^ N )  C_  ( M..^ N ) )
124, 11sylan2 460 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K..^ N )  =/=  (/) )  -> 
( K..^ N ) 
C_  ( M..^ N
) )
13 0ss 3483 . . 3  |-  (/)  C_  ( M..^ N )
1413a1i 10 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  (/)  C_  ( M..^ N ) )
151, 12, 14pm2.61ne 2521 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K..^ N )  C_  ( M..^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   (/)c0 3455   ` cfv 5255  (class class class)co 5858   1c1 8738    - cmin 9037   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782  ..^cfzo 10870
This theorem is referenced by:  fzosplit  10899  fzofzp1  10916  fzostep1  10922  ccatval2  11432  ccatass  11436  swrdval2  11453  splfv2a  11471  revccat  11484  fsumparts  12264  dfphi2  12842  efgsp1  15046  efgsres  15047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871
  Copyright terms: Public domain W3C validator