MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzouzsplit Unicode version

Theorem fzouzsplit 11098
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )

Proof of Theorem fzouzsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eluzelre 10429 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  RR )
2 eluzelre 10429 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  RR )
3 lelttric 9113 . . . . . . . 8  |-  ( ( B  e.  RR  /\  x  e.  RR )  ->  ( B  <_  x  \/  x  <  B ) )
41, 2, 3syl2an 464 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( B  <_  x  \/  x  < 
B ) )
54orcomd 378 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  <  B  \/  B  <_  x ) )
6 id 20 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ( ZZ>= `  A )
)
7 eluzelz 10428 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
8 elfzo2 11073 . . . . . . . . . 10  |-  ( x  e.  ( A..^ B
)  <->  ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  <  B ) )
9 df-3an 938 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  < 
B )  <->  ( (
x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  /\  x  <  B ) )
108, 9bitri 241 . . . . . . . . 9  |-  ( x  e.  ( A..^ B
)  <->  ( ( x  e.  ( ZZ>= `  A
)  /\  B  e.  ZZ )  /\  x  <  B ) )
1110baib 872 . . . . . . . 8  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  ->  (
x  e.  ( A..^ B )  <->  x  <  B ) )
126, 7, 11syl2anr 465 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  <-> 
x  <  B )
)
13 eluzelz 10428 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ZZ )
14 eluz 10431 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  B )  <->  B  <_  x ) )
157, 13, 14syl2an 464 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( ZZ>= `  B )  <->  B  <_  x ) )
1612, 15orbi12d 691 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( (
x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B )
)  <->  ( x  < 
B  \/  B  <_  x ) ) )
175, 16mpbird 224 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  \/  x  e.  (
ZZ>= `  B ) ) )
1817ex 424 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  ( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) ) )
19 elun 3431 . . . 4  |-  ( x  e.  ( ( A..^ B )  u.  ( ZZ>=
`  B ) )  <-> 
( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) )
2018, 19syl6ibr 219 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  x  e.  ( ( A..^ B )  u.  ( ZZ>= `  B )
) ) )
2120ssrdv 3297 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  C_  (
( A..^ B )  u.  ( ZZ>= `  B
) ) )
22 elfzouz 11074 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  x  e.  ( ZZ>= `  A )
)
2322ssriv 3295 . . . 4  |-  ( A..^ B )  C_  ( ZZ>=
`  A )
2423a1i 11 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  C_  ( ZZ>=
`  A ) )
25 uzss 10438 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  B )  C_  ( ZZ>=
`  A ) )
2624, 25unssd 3466 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A..^ B )  u.  ( ZZ>=
`  B ) ) 
C_  ( ZZ>= `  A
) )
2721, 26eqssd 3308 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    u. cun 3261    C_ wss 3263   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   RRcr 8922    < clt 9053    <_ cle 9054   ZZcz 10214   ZZ>=cuz 10420  ..^cfzo 11065
This theorem is referenced by:  bitsres  12912
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-fzo 11066
  Copyright terms: Public domain W3C validator