MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzrevral Structured version   Unicode version

Theorem fzrevral 11123
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrevral  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Distinct variable groups:    j, k, K    j, M, k    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzrevral
StepHypRef Expression
1 simpr 448 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )
2 elfzelz 11051 . . . . . . . . 9  |-  ( k  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  k  e.  ZZ )
3 fzrev 11100 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
43anassrs 630 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
52, 4sylan2 461 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  <->  ( K  -  k )  e.  ( M ... N
) ) )
61, 5mpbid 202 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( K  -  k )  e.  ( M ... N
) )
7 rspsbc 3231 . . . . . . 7  |-  ( ( K  -  k )  e.  ( M ... N )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
86, 7syl 16 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  k  e.  ( ( K  -  N ) ... ( K  -  M )
) )  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k )  /  j ]. ph ) )
98ex 424 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( k  e.  ( ( K  -  N ) ... ( K  -  M )
)  ->  ( A. j  e.  ( M ... N ) ph  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1093impa 1148 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( ( K  -  N ) ... ( K  -  M ) )  -> 
( A. j  e.  ( M ... N
) ph  ->  [. ( K  -  k )  /  j ]. ph )
) )
1110com23 74 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  ( k  e.  ( ( K  -  N
) ... ( K  -  M ) )  ->  [. ( K  -  k
)  /  j ]. ph ) ) )
1211ralrimdv 2787 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  ->  A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
13 nfv 1629 . . . 4  |-  F/ j  K  e.  ZZ
14 nfcv 2571 . . . . 5  |-  F/_ j
( ( K  -  N ) ... ( K  -  M )
)
15 nfsbc1v 3172 . . . . 5  |-  F/ j
[. ( K  -  k )  /  j ]. ph
1614, 15nfral 2751 . . . 4  |-  F/ j A. k  e.  ( ( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph
17 fzrev2i 11102 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  j
)  e.  ( ( K  -  N ) ... ( K  -  M ) ) )
18 oveq2 6081 . . . . . . . . . 10  |-  ( k  =  ( K  -  j )  ->  ( K  -  k )  =  ( K  -  ( K  -  j
) ) )
19 dfsbcq 3155 . . . . . . . . . 10  |-  ( ( K  -  k )  =  ( K  -  ( K  -  j
) )  ->  ( [. ( K  -  k
)  /  j ]. ph  <->  [. ( K  -  ( K  -  j )
)  /  j ]. ph ) )
2018, 19syl 16 . . . . . . . . 9  |-  ( k  =  ( K  -  j )  ->  ( [. ( K  -  k
)  /  j ]. ph  <->  [. ( K  -  ( K  -  j )
)  /  j ]. ph ) )
2120rspcv 3040 . . . . . . . 8  |-  ( ( K  -  j )  e.  ( ( K  -  N ) ... ( K  -  M
) )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
2217, 21syl 16 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  [. ( K  -  ( K  -  j ) )  / 
j ]. ph ) )
23 zcn 10279 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  K  e.  CC )
24 elfzelz 11051 . . . . . . . . . . 11  |-  ( j  e.  ( M ... N )  ->  j  e.  ZZ )
2524zcnd 10368 . . . . . . . . . 10  |-  ( j  e.  ( M ... N )  ->  j  e.  CC )
26 nncan 9322 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  j  e.  CC )  ->  ( K  -  ( K  -  j )
)  =  j )
2723, 25, 26syl2an 464 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( K  -  ( K  -  j )
)  =  j )
2827eqcomd 2440 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
j  =  ( K  -  ( K  -  j ) ) )
29 sbceq1a 3163 . . . . . . . 8  |-  ( j  =  ( K  -  ( K  -  j
) )  ->  ( ph 
<-> 
[. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
3028, 29syl 16 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( ph  <->  [. ( K  -  ( K  -  j
) )  /  j ]. ph ) )
3122, 30sylibrd 226 . . . . . 6  |-  ( ( K  e.  ZZ  /\  j  e.  ( M ... N ) )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) )
3231ex 424 . . . . 5  |-  ( K  e.  ZZ  ->  (
j  e.  ( M ... N )  -> 
( A. k  e.  ( ( K  -  N ) ... ( K  -  M )
) [. ( K  -  k )  /  j ]. ph  ->  ph ) ) )
3332com23 74 . . . 4  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  ( j  e.  ( M ... N )  ->  ph ) ) )
3413, 16, 33ralrimd 2786 . . 3  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
35343ad2ant3 980 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  N
) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph 
->  A. j  e.  ( M ... N )
ph ) )
3612, 35impbid 184 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( K  -  N ) ... ( K  -  M ) ) [. ( K  -  k
)  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   [.wsbc 3153  (class class class)co 6073   CCcc 8980    - cmin 9283   ZZcz 10274   ...cfz 11035
This theorem is referenced by:  fzrevral2  11124  fzrevral3  11125  fzshftral  11126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036
  Copyright terms: Public domain W3C validator