MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzrevral3 Unicode version

Theorem fzrevral3 10868
Description: Reversal of scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
Assertion
Ref Expression
fzrevral3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. j  e.  ( M ... N
) ph  <->  A. k  e.  ( M ... N )
[. ( ( M  +  N )  -  k )  /  j ]. ph ) )
Distinct variable groups:    j, k, M    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzrevral3
StepHypRef Expression
1 zaddcl 10059 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
2 fzrevral 10866 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M  +  N )  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( ( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) ) [. ( ( M  +  N )  -  k
)  /  j ]. ph ) )
31, 2mpd3an3 1278 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. j  e.  ( M ... N
) ph  <->  A. k  e.  ( ( ( M  +  N )  -  N
) ... ( ( M  +  N )  -  M ) ) [. ( ( M  +  N )  -  k
)  /  j ]. ph ) )
4 zcn 10029 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  CC )
5 zcn 10029 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
6 pncan 9057 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  N
)  =  M )
7 pncan2 9058 . . . . 5  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  M
)  =  N )
86, 7oveq12d 5876 . . . 4  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) )  =  ( M ... N ) )
94, 5, 8syl2an 463 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) )  =  ( M ... N ) )
109raleqdv 2742 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. k  e.  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) ) [. ( ( M  +  N )  -  k )  / 
j ]. ph  <->  A. k  e.  ( M ... N
) [. ( ( M  +  N )  -  k )  /  j ]. ph ) )
113, 10bitrd 244 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. j  e.  ( M ... N
) ph  <->  A. k  e.  ( M ... N )
[. ( ( M  +  N )  -  k )  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   [.wsbc 2991  (class class class)co 5858   CCcc 8735    + caddc 8740    - cmin 9037   ZZcz 10024   ...cfz 10782
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783
  Copyright terms: Public domain W3C validator