MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzshftral Unicode version

Theorem fzshftral 10869
Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
fzshftral  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
Distinct variable groups:    j, k, K    j, M, k    j, N, k    ph, k
Allowed substitution hint:    ph( j)

Proof of Theorem fzshftral
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0z 10035 . . . 4  |-  0  e.  ZZ
2 fzrevral 10866 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  0  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. x  e.  ( ( 0  -  N ) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph ) )
31, 2mp3an3 1266 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( A. j  e.  ( M ... N
) ph  <->  A. x  e.  ( ( 0  -  N
) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph ) )
433adant3 975 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. x  e.  ( ( 0  -  N ) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph ) )
5 zsubcl 10061 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  -  N
)  e.  ZZ )
61, 5mpan 651 . . . 4  |-  ( N  e.  ZZ  ->  (
0  -  N )  e.  ZZ )
7 zsubcl 10061 . . . . 5  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0  -  M
)  e.  ZZ )
81, 7mpan 651 . . . 4  |-  ( M  e.  ZZ  ->  (
0  -  M )  e.  ZZ )
9 id 19 . . . 4  |-  ( K  e.  ZZ  ->  K  e.  ZZ )
10 fzrevral 10866 . . . 4  |-  ( ( ( 0  -  N
)  e.  ZZ  /\  ( 0  -  M
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. x  e.  ( ( 0  -  N ) ... (
0  -  M ) ) [. ( 0  -  x )  / 
j ]. ph  <->  A. k  e.  ( ( K  -  ( 0  -  M
) ) ... ( K  -  ( 0  -  N ) ) ) [. ( K  -  k )  /  x ]. [. ( 0  -  x )  / 
j ]. ph ) )
116, 8, 9, 10syl3an 1224 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. x  e.  (
( 0  -  N
) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph  <->  A. k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  ( 0  -  N
) ) ) [. ( K  -  k
)  /  x ]. [. ( 0  -  x
)  /  j ]. ph ) )
12113com12 1155 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. x  e.  (
( 0  -  N
) ... ( 0  -  M ) ) [. ( 0  -  x
)  /  j ]. ph  <->  A. k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  ( 0  -  N
) ) ) [. ( K  -  k
)  /  x ]. [. ( 0  -  x
)  /  j ]. ph ) )
13 ovex 5883 . . . . 5  |-  ( K  -  k )  e. 
_V
14 ovex 5883 . . . . . 6  |-  ( 0  -  x )  e. 
_V
1514ax-gen 1533 . . . . 5  |-  A. x
( 0  -  x
)  e.  _V
16 oveq2 5866 . . . . . 6  |-  ( x  =  ( K  -  k )  ->  (
0  -  x )  =  ( 0  -  ( K  -  k
) ) )
1716sbcco3gOLD 3137 . . . . 5  |-  ( ( ( K  -  k
)  e.  _V  /\  A. x ( 0  -  x )  e.  _V )  ->  ( [. ( K  -  k )  /  x ]. [. (
0  -  x )  /  j ]. ph  <->  [. ( 0  -  ( K  -  k ) )  / 
j ]. ph ) )
1813, 15, 17mp2an 653 . . . 4  |-  ( [. ( K  -  k
)  /  x ]. [. ( 0  -  x
)  /  j ]. ph  <->  [. ( 0  -  ( K  -  k )
)  /  j ]. ph )
1918ralbii 2567 . . 3  |-  ( A. k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  ( 0  -  N
) ) ) [. ( K  -  k
)  /  x ]. [. ( 0  -  x
)  /  j ]. ph  <->  A. k  e.  ( ( K  -  ( 0  -  M ) ) ... ( K  -  ( 0  -  N
) ) ) [. ( 0  -  ( K  -  k )
)  /  j ]. ph )
20 zcn 10029 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  CC )
21 zcn 10029 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
22 zcn 10029 . . . . . 6  |-  ( K  e.  ZZ  ->  K  e.  CC )
23 df-neg 9040 . . . . . . . . . . 11  |-  -u M  =  ( 0  -  M )
2423oveq2i 5869 . . . . . . . . . 10  |-  ( K  -  -u M )  =  ( K  -  (
0  -  M ) )
25 subneg 9096 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  -  -u M
)  =  ( K  +  M ) )
26 addcom 8998 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  +  M
)  =  ( M  +  K ) )
2725, 26eqtrd 2315 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  -  -u M
)  =  ( M  +  K ) )
2824, 27syl5eqr 2329 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  M  e.  CC )  ->  ( K  -  (
0  -  M ) )  =  ( M  +  K ) )
29283adant3 975 . . . . . . . 8  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  ( K  -  ( 0  -  M ) )  =  ( M  +  K ) )
30 df-neg 9040 . . . . . . . . . . 11  |-  -u N  =  ( 0  -  N )
3130oveq2i 5869 . . . . . . . . . 10  |-  ( K  -  -u N )  =  ( K  -  (
0  -  N ) )
32 subneg 9096 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  -  -u N
)  =  ( K  +  N ) )
33 addcom 8998 . . . . . . . . . . 11  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  +  N
)  =  ( N  +  K ) )
3432, 33eqtrd 2315 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  -  -u N
)  =  ( N  +  K ) )
3531, 34syl5eqr 2329 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  N  e.  CC )  ->  ( K  -  (
0  -  N ) )  =  ( N  +  K ) )
36353adant2 974 . . . . . . . 8  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  ( K  -  ( 0  -  N ) )  =  ( N  +  K ) )
3729, 36oveq12d 5876 . . . . . . 7  |-  ( ( K  e.  CC  /\  M  e.  CC  /\  N  e.  CC )  ->  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )  =  ( ( M  +  K ) ... ( N  +  K
) ) )
38373coml 1158 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  K  e.  CC )  ->  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )  =  ( ( M  +  K ) ... ( N  +  K
) ) )
3920, 21, 22, 38syl3an 1224 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )  =  ( ( M  +  K ) ... ( N  +  K
) ) )
4039raleqdv 2742 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( 0  -  ( K  -  k
) )  /  j ]. ph  <->  A. k  e.  ( ( M  +  K
) ... ( N  +  K ) ) [. ( 0  -  ( K  -  k )
)  /  j ]. ph ) )
41 elfzelz 10798 . . . . . . . . 9  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  k  e.  ZZ )
4241zcnd 10118 . . . . . . . 8  |-  ( k  e.  ( ( M  +  K ) ... ( N  +  K
) )  ->  k  e.  CC )
43 df-neg 9040 . . . . . . . . 9  |-  -u ( K  -  k )  =  ( 0  -  ( K  -  k
) )
44 negsubdi2 9106 . . . . . . . . 9  |-  ( ( K  e.  CC  /\  k  e.  CC )  -> 
-u ( K  -  k )  =  ( k  -  K ) )
4543, 44syl5eqr 2329 . . . . . . . 8  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( 0  -  ( K  -  k )
)  =  ( k  -  K ) )
4622, 42, 45syl2an 463 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  k  e.  ( ( M  +  K ) ... ( N  +  K
) ) )  -> 
( 0  -  ( K  -  k )
)  =  ( k  -  K ) )
47 dfsbcq 2993 . . . . . . 7  |-  ( ( 0  -  ( K  -  k ) )  =  ( k  -  K )  ->  ( [. ( 0  -  ( K  -  k )
)  /  j ]. ph  <->  [. ( k  -  K
)  /  j ]. ph ) )
4846, 47syl 15 . . . . . 6  |-  ( ( K  e.  ZZ  /\  k  e.  ( ( M  +  K ) ... ( N  +  K
) ) )  -> 
( [. ( 0  -  ( K  -  k
) )  /  j ]. ph  <->  [. ( k  -  K )  /  j ]. ph ) )
4948ralbidva 2559 . . . . 5  |-  ( K  e.  ZZ  ->  ( A. k  e.  (
( M  +  K
) ... ( N  +  K ) ) [. ( 0  -  ( K  -  k )
)  /  j ]. ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
50493ad2ant3 978 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( M  +  K
) ... ( N  +  K ) ) [. ( 0  -  ( K  -  k )
)  /  j ]. ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
5140, 50bitrd 244 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( 0  -  ( K  -  k
) )  /  j ]. ph  <->  A. k  e.  ( ( M  +  K
) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
5219, 51syl5bb 248 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. k  e.  (
( K  -  (
0  -  M ) ) ... ( K  -  ( 0  -  N ) ) )
[. ( K  -  k )  /  x ]. [. ( 0  -  x )  /  j ]. ph  <->  A. k  e.  ( ( M  +  K
) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
534, 12, 523bitrd 270 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( A. j  e.  ( M ... N ) ph  <->  A. k  e.  ( ( M  +  K ) ... ( N  +  K ) ) [. ( k  -  K
)  /  j ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   [.wsbc 2991  (class class class)co 5858   CCcc 8735   0cc0 8737    + caddc 8740    - cmin 9037   -ucneg 9038   ZZcz 10024   ...cfz 10782
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783
  Copyright terms: Public domain W3C validator