MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzss1 Structured version   Unicode version

Theorem fzss1 11091
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )

Proof of Theorem fzss1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzuz 11055 . . . . 5  |-  ( k  e.  ( K ... N )  ->  k  e.  ( ZZ>= `  K )
)
2 id 20 . . . . 5  |-  ( K  e.  ( ZZ>= `  M
)  ->  K  e.  ( ZZ>= `  M )
)
3 uztrn 10502 . . . . 5  |-  ( ( k  e.  ( ZZ>= `  K )  /\  K  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
41, 2, 3syl2anr 465 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( ZZ>= `  M )
)
5 elfzuz3 11056 . . . . 5  |-  ( k  e.  ( K ... N )  ->  N  e.  ( ZZ>= `  k )
)
65adantl 453 . . . 4  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  N  e.  ( ZZ>= `  k )
)
7 elfzuzb 11053 . . . 4  |-  ( k  e.  ( M ... N )  <->  ( k  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  k ) ) )
84, 6, 7sylanbrc 646 . . 3  |-  ( ( K  e.  ( ZZ>= `  M )  /\  k  e.  ( K ... N
) )  ->  k  e.  ( M ... N
) )
98ex 424 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( K ... N
)  ->  k  e.  ( M ... N ) ) )
109ssrdv 3354 1  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( K ... N )  C_  ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725    C_ wss 3320   ` cfv 5454  (class class class)co 6081   ZZ>=cuz 10488   ...cfz 11043
This theorem is referenced by:  fzp1ss  11098  fzoss1  11162  sermono  11355  seqsplit  11356  seqf1olem2  11363  seqz  11371  bcpasc  11612  seqcoll2  11713  mertenslem1  12661  structfn  13482  strleun  13559  efgsres  15370  efgredlemd  15376  efgredlem  15379  ply1termlem  20122  dvply1  20201  dvtaylp  20286  taylthlem2  20290  basellem5  20867  ppisval2  20887  ppiltx  20960  chtlepsi  20990  chtublem  20995  chpub  21004  chtppilimlem1  21167  pntlemq  21295  pntlemf  21299  fzssnn  24147  esumpmono  24469  ballotlem2  24746  ballotlemfc0  24750  ballotlemfcc  24751  ballotlemfrci  24785  ballotlemfrceq  24786  axlowdimlem16  25896  axlowdimlem17  25897  axlowdim  25900  fdc  26449  jm2.23  27067  stoweidlem11  27736  fzossnn0  28124  swrd0fv0  28193  swrdswrd  28199  swrdccatin2  28210  swrdccatin12lem3c  28211  swrdccatin12  28214  reumodprminv  28227  swrd0fvls  28264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-pre-lttri 9064  ax-pre-lttrn 9065
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-neg 9294  df-z 10283  df-uz 10489  df-fz 11044
  Copyright terms: Public domain W3C validator