MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval Structured version   Unicode version

Theorem fzval 11045
Description: The value of a finite set of sequential integers. E.g.,  2 ... 5 means the set  { 2 ,  3 ,  4 ,  5 }. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where  NN_k means our  1 ... k; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Distinct variable groups:    k, M    k, N

Proof of Theorem fzval
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4215 . . . 4  |-  ( m  =  M  ->  (
m  <_  k  <->  M  <_  k ) )
21anbi1d 686 . . 3  |-  ( m  =  M  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  n ) ) )
32rabbidv 2948 . 2  |-  ( m  =  M  ->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) } )
4 breq2 4216 . . . 4  |-  ( n  =  N  ->  (
k  <_  n  <->  k  <_  N ) )
54anbi2d 685 . . 3  |-  ( n  =  N  ->  (
( M  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  N ) ) )
65rabbidv 2948 . 2  |-  ( n  =  N  ->  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
7 df-fz 11044 . 2  |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_ 
k  /\  k  <_  n ) } )
8 zex 10291 . . 3  |-  ZZ  e.  _V
98rabex 4354 . 2  |-  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) }  e.  _V
103, 6, 7, 9ovmpt2 6209 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709   class class class wbr 4212  (class class class)co 6081    <_ cle 9121   ZZcz 10282   ...cfz 11043
This theorem is referenced by:  fzval2  11046  elfz1  11048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-cnex 9046  ax-resscn 9047
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-neg 9294  df-z 10283  df-fz 11044
  Copyright terms: Public domain W3C validator