MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaid Unicode version

Theorem gaid 14753
Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaid.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
gaid  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( 2nd  |`  ( X  X.  S ) )  e.  ( G  GrpAct  S ) )

Proof of Theorem gaid
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2796 . . 3  |-  ( S  e.  V  ->  S  e.  _V )
21anim2i 552 . 2  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( G  e.  Grp  /\  S  e.  _V )
)
3 gaid.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
4 eqid 2283 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
53, 4grpidcl 14510 . . . . . . 7  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
65adantr 451 . . . . . 6  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( 0g `  G
)  e.  X )
7 ovres 5987 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  x  e.  S )  ->  ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  ( ( 0g
`  G ) 2nd x ) )
8 df-ov 5861 . . . . . . . 8  |-  ( ( 0g `  G ) 2nd x )  =  ( 2nd `  <. ( 0g `  G ) ,  x >. )
9 fvex 5539 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
10 vex 2791 . . . . . . . . 9  |-  x  e. 
_V
119, 10op2nd 6129 . . . . . . . 8  |-  ( 2nd `  <. ( 0g `  G ) ,  x >. )  =  x
128, 11eqtri 2303 . . . . . . 7  |-  ( ( 0g `  G ) 2nd x )  =  x
137, 12syl6eq 2331 . . . . . 6  |-  ( ( ( 0g `  G
)  e.  X  /\  x  e.  S )  ->  ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  x )
146, 13sylan 457 . . . . 5  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x )
15 simprl 732 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  y  e.  X )
16 simplr 731 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  x  e.  S )
17 ovres 5987 . . . . . . . . 9  |-  ( ( y  e.  X  /\  x  e.  S )  ->  ( y ( 2nd  |`  ( X  X.  S
) ) x )  =  ( y 2nd x ) )
18 df-ov 5861 . . . . . . . . . 10  |-  ( y 2nd x )  =  ( 2nd `  <. y ,  x >. )
19 vex 2791 . . . . . . . . . . 11  |-  y  e. 
_V
2019, 10op2nd 6129 . . . . . . . . . 10  |-  ( 2nd `  <. y ,  x >. )  =  x
2118, 20eqtri 2303 . . . . . . . . 9  |-  ( y 2nd x )  =  x
2217, 21syl6eq 2331 . . . . . . . 8  |-  ( ( y  e.  X  /\  x  e.  S )  ->  ( y ( 2nd  |`  ( X  X.  S
) ) x )  =  x )
2315, 16, 22syl2anc 642 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( 2nd  |`  ( X  X.  S ) ) x )  =  x )
24 simprr 733 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  z  e.  X )
25 ovres 5987 . . . . . . . . . 10  |-  ( ( z  e.  X  /\  x  e.  S )  ->  ( z ( 2nd  |`  ( X  X.  S
) ) x )  =  ( z 2nd x ) )
26 df-ov 5861 . . . . . . . . . . 11  |-  ( z 2nd x )  =  ( 2nd `  <. z ,  x >. )
27 vex 2791 . . . . . . . . . . . 12  |-  z  e. 
_V
2827, 10op2nd 6129 . . . . . . . . . . 11  |-  ( 2nd `  <. z ,  x >. )  =  x
2926, 28eqtri 2303 . . . . . . . . . 10  |-  ( z 2nd x )  =  x
3025, 29syl6eq 2331 . . . . . . . . 9  |-  ( ( z  e.  X  /\  x  e.  S )  ->  ( z ( 2nd  |`  ( X  X.  S
) ) x )  =  x )
3124, 16, 30syl2anc 642 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( z
( 2nd  |`  ( X  X.  S ) ) x )  =  x )
3231oveq2d 5874 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) )  =  ( y ( 2nd  |`  ( X  X.  S ) ) x ) )
33 simpll 730 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  G  e.  Grp )
34 eqid 2283 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
353, 34grpcl 14495 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  y  e.  X  /\  z  e.  X )  ->  ( y ( +g  `  G ) z )  e.  X )
36353expb 1152 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( y  e.  X  /\  z  e.  X
) )  ->  (
y ( +g  `  G
) z )  e.  X )
3733, 36sylan 457 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y
( +g  `  G ) z )  e.  X
)
38 ovres 5987 . . . . . . . . 9  |-  ( ( ( y ( +g  `  G ) z )  e.  X  /\  x  e.  S )  ->  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( ( y ( +g  `  G ) z ) 2nd x ) )
39 df-ov 5861 . . . . . . . . . 10  |-  ( ( y ( +g  `  G
) z ) 2nd x )  =  ( 2nd `  <. (
y ( +g  `  G
) z ) ,  x >. )
40 ovex 5883 . . . . . . . . . . 11  |-  ( y ( +g  `  G
) z )  e. 
_V
4140, 10op2nd 6129 . . . . . . . . . 10  |-  ( 2nd `  <. ( y ( +g  `  G ) z ) ,  x >. )  =  x
4239, 41eqtri 2303 . . . . . . . . 9  |-  ( ( y ( +g  `  G
) z ) 2nd x )  =  x
4338, 42syl6eq 2331 . . . . . . . 8  |-  ( ( ( y ( +g  `  G ) z )  e.  X  /\  x  e.  S )  ->  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x )
4437, 16, 43syl2anc 642 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x )
4523, 32, 443eqtr4rd 2326 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  S  e.  V )  /\  x  e.  S )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( (
y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) )
4645ralrimivva 2635 . . . . 5  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  A. y  e.  X  A. z  e.  X  ( (
y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) )
4714, 46jca 518 . . . 4  |-  ( ( ( G  e.  Grp  /\  S  e.  V )  /\  x  e.  S
)  ->  ( (
( 0g `  G
) ( 2nd  |`  ( X  X.  S ) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y ( +g  `  G
) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) )
4847ralrimiva 2626 . . 3  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  A. x  e.  S  ( ( ( 0g
`  G ) ( 2nd  |`  ( X  X.  S ) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) )
49 f2ndres 6142 . . 3  |-  ( 2nd  |`  ( X  X.  S
) ) : ( X  X.  S ) --> S
5048, 49jctil 523 . 2  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( ( 2nd  |`  ( X  X.  S ) ) : ( X  X.  S ) --> S  /\  A. x  e.  S  ( ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) ) )
513, 34, 4isga 14745 . 2  |-  ( ( 2nd  |`  ( X  X.  S ) )  e.  ( G  GrpAct  S )  <-> 
( ( G  e. 
Grp  /\  S  e.  _V )  /\  (
( 2nd  |`  ( X  X.  S ) ) : ( X  X.  S ) --> S  /\  A. x  e.  S  ( ( ( 0g `  G ) ( 2nd  |`  ( X  X.  S
) ) x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y ( +g  `  G ) z ) ( 2nd  |`  ( X  X.  S ) ) x )  =  ( y ( 2nd  |`  ( X  X.  S ) ) ( z ( 2nd  |`  ( X  X.  S
) ) x ) ) ) ) ) )
522, 50, 51sylanbrc 645 1  |-  ( ( G  e.  Grp  /\  S  e.  V )  ->  ( 2nd  |`  ( X  X.  S ) )  e.  ( G  GrpAct  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   <.cop 3643    X. cxp 4687    |` cres 4691   -->wf 5251   ` cfv 5255  (class class class)co 5858   2ndc2nd 6121   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362    GrpAct cga 14743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-map 6774  df-0g 13404  df-mnd 14367  df-grp 14489  df-ga 14744
  Copyright terms: Public domain W3C validator