MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galactghm Unicode version

Theorem galactghm 14799
Description: The currying of a group action is a group homomorphism between the group  G and the symetry group  ( SymGrp `  Y
). (Contributed by FL, 17-May-2010.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
galactghm.x  |-  X  =  ( Base `  G
)
galactghm.h  |-  H  =  ( SymGrp `  Y )
galactghm.f  |-  F  =  ( x  e.  X  |->  ( y  e.  Y  |->  ( x  .(+)  y ) ) )
Assertion
Ref Expression
galactghm  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  F  e.  ( G  GrpHom  H ) )
Distinct variable groups:    x, y, G    x,  .(+) , y    x, X, y    x, H    x, Y, y
Allowed substitution hints:    F( x, y)    H( y)

Proof of Theorem galactghm
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 galactghm.x . 2  |-  X  =  ( Base `  G
)
2 eqid 2296 . 2  |-  ( Base `  H )  =  (
Base `  H )
3 eqid 2296 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 eqid 2296 . 2  |-  ( +g  `  H )  =  ( +g  `  H )
5 gagrp 14762 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
6 gaset 14763 . . 3  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Y  e.  _V )
7 galactghm.h . . . 4  |-  H  =  ( SymGrp `  Y )
87symggrp 14796 . . 3  |-  ( Y  e.  _V  ->  H  e.  Grp )
96, 8syl 15 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  H  e.  Grp )
10 eqid 2296 . . . . 5  |-  ( y  e.  Y  |->  ( x 
.(+)  y ) )  =  ( y  e.  Y  |->  ( x  .(+)  y ) )
111, 10gapm 14776 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x  .(+)  y )
) : Y -1-1-onto-> Y )
126adantr 451 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  X )  ->  Y  e.  _V )
137, 2elsymgbas 14790 . . . . 5  |-  ( Y  e.  _V  ->  (
( y  e.  Y  |->  ( x  .(+)  y ) )  e.  ( Base `  H )  <->  ( y  e.  Y  |->  ( x 
.(+)  y ) ) : Y -1-1-onto-> Y ) )
1412, 13syl 15 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  X )  ->  (
( y  e.  Y  |->  ( x  .(+)  y ) )  e.  ( Base `  H )  <->  ( y  e.  Y  |->  ( x 
.(+)  y ) ) : Y -1-1-onto-> Y ) )
1511, 14mpbird 223 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( x  .(+)  y )
)  e.  ( Base `  H ) )
16 galactghm.f . . 3  |-  F  =  ( x  e.  X  |->  ( y  e.  Y  |->  ( x  .(+)  y ) ) )
1715, 16fmptd 5700 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  F : X --> ( Base `  H )
)
18 df-3an 936 . . . . . 6  |-  ( ( z  e.  X  /\  w  e.  X  /\  y  e.  Y )  <->  ( ( z  e.  X  /\  w  e.  X
)  /\  y  e.  Y ) )
191, 3gaass 14767 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X  /\  y  e.  Y )
)  ->  ( (
z ( +g  `  G
) w )  .(+)  y )  =  ( z 
.(+)  ( w  .(+)  y ) ) )
2018, 19sylan2br 462 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
( z  e.  X  /\  w  e.  X
)  /\  y  e.  Y ) )  -> 
( ( z ( +g  `  G ) w )  .(+)  y )  =  ( z  .(+)  ( w  .(+)  y )
) )
2120anassrs 629 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  y  e.  Y )  ->  (
( z ( +g  `  G ) w ) 
.(+)  y )  =  ( z  .(+)  ( w 
.(+)  y ) ) )
2221mpteq2dva 4122 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( y  e.  Y  |->  ( ( z ( +g  `  G
) w )  .(+)  y ) )  =  ( y  e.  Y  |->  ( z  .(+)  ( w  .(+) 
y ) ) ) )
235adantr 451 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  G  e.  Grp )
24 simprl 732 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  z  e.  X )
25 simprr 733 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  w  e.  X )
261, 3grpcl 14511 . . . . 5  |-  ( ( G  e.  Grp  /\  z  e.  X  /\  w  e.  X )  ->  ( z ( +g  `  G ) w )  e.  X )
2723, 24, 25, 26syl3anc 1182 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( z
( +g  `  G ) w )  e.  X
)
286adantr 451 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  Y  e.  _V )
29 mptexg 5761 . . . . 5  |-  ( Y  e.  _V  ->  (
y  e.  Y  |->  ( ( z ( +g  `  G ) w ) 
.(+)  y ) )  e.  _V )
3028, 29syl 15 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( y  e.  Y  |->  ( ( z ( +g  `  G
) w )  .(+)  y ) )  e.  _V )
31 oveq1 5881 . . . . . 6  |-  ( x  =  ( z ( +g  `  G ) w )  ->  (
x  .(+)  y )  =  ( ( z ( +g  `  G ) w )  .(+)  y ) )
3231mpteq2dv 4123 . . . . 5  |-  ( x  =  ( z ( +g  `  G ) w )  ->  (
y  e.  Y  |->  ( x  .(+)  y )
)  =  ( y  e.  Y  |->  ( ( z ( +g  `  G
) w )  .(+)  y ) ) )
3332, 16fvmptg 5616 . . . 4  |-  ( ( ( z ( +g  `  G ) w )  e.  X  /\  (
y  e.  Y  |->  ( ( z ( +g  `  G ) w ) 
.(+)  y ) )  e.  _V )  -> 
( F `  (
z ( +g  `  G
) w ) )  =  ( y  e.  Y  |->  ( ( z ( +g  `  G
) w )  .(+)  y ) ) )
3427, 30, 33syl2anc 642 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( F `  ( z ( +g  `  G ) w ) )  =  ( y  e.  Y  |->  ( ( z ( +g  `  G
) w )  .(+)  y ) ) )
3517adantr 451 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  F : X
--> ( Base `  H
) )
36 ffvelrn 5679 . . . . . 6  |-  ( ( F : X --> ( Base `  H )  /\  z  e.  X )  ->  ( F `  z )  e.  ( Base `  H
) )
3735, 24, 36syl2anc 642 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( F `  z )  e.  (
Base `  H )
)
38 ffvelrn 5679 . . . . . 6  |-  ( ( F : X --> ( Base `  H )  /\  w  e.  X )  ->  ( F `  w )  e.  ( Base `  H
) )
3935, 25, 38syl2anc 642 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( F `  w )  e.  (
Base `  H )
)
407, 2, 4symgov 14793 . . . . 5  |-  ( ( ( F `  z
)  e.  ( Base `  H )  /\  ( F `  w )  e.  ( Base `  H
) )  ->  (
( F `  z
) ( +g  `  H
) ( F `  w ) )  =  ( ( F `  z )  o.  ( F `  w )
) )
4137, 39, 40syl2anc 642 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )
( +g  `  H ) ( F `  w
) )  =  ( ( F `  z
)  o.  ( F `
 w ) ) )
421gaf 14765 . . . . . . 7  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
4342ad2antrr 706 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  y  e.  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
4425adantr 451 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  y  e.  Y )  ->  w  e.  X )
45 simpr 447 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  y  e.  Y )  ->  y  e.  Y )
46 fovrn 6006 . . . . . 6  |-  ( ( 
.(+)  : ( X  X.  Y ) --> Y  /\  w  e.  X  /\  y  e.  Y )  ->  ( w  .(+)  y )  e.  Y )
4743, 44, 45, 46syl3anc 1182 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  ( z  e.  X  /\  w  e.  X
) )  /\  y  e.  Y )  ->  (
w  .(+)  y )  e.  Y )
48 mptexg 5761 . . . . . . 7  |-  ( Y  e.  _V  ->  (
y  e.  Y  |->  ( w  .(+)  y )
)  e.  _V )
4928, 48syl 15 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( y  e.  Y  |->  ( w 
.(+)  y ) )  e.  _V )
50 oveq1 5881 . . . . . . . 8  |-  ( x  =  w  ->  (
x  .(+)  y )  =  ( w  .(+)  y ) )
5150mpteq2dv 4123 . . . . . . 7  |-  ( x  =  w  ->  (
y  e.  Y  |->  ( x  .(+)  y )
)  =  ( y  e.  Y  |->  ( w 
.(+)  y ) ) )
5251, 16fvmptg 5616 . . . . . 6  |-  ( ( w  e.  X  /\  ( y  e.  Y  |->  ( w  .(+)  y ) )  e.  _V )  ->  ( F `  w
)  =  ( y  e.  Y  |->  ( w 
.(+)  y ) ) )
5325, 49, 52syl2anc 642 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( F `  w )  =  ( y  e.  Y  |->  ( w  .(+)  y )
) )
54 mptexg 5761 . . . . . . . 8  |-  ( Y  e.  _V  ->  (
y  e.  Y  |->  ( z  .(+)  y )
)  e.  _V )
5528, 54syl 15 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( y  e.  Y  |->  ( z 
.(+)  y ) )  e.  _V )
56 oveq1 5881 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  .(+)  y )  =  ( z  .(+)  y ) )
5756mpteq2dv 4123 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  Y  |->  ( x  .(+)  y )
)  =  ( y  e.  Y  |->  ( z 
.(+)  y ) ) )
5857, 16fvmptg 5616 . . . . . . 7  |-  ( ( z  e.  X  /\  ( y  e.  Y  |->  ( z  .(+)  y ) )  e.  _V )  ->  ( F `  z
)  =  ( y  e.  Y  |->  ( z 
.(+)  y ) ) )
5924, 55, 58syl2anc 642 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( F `  z )  =  ( y  e.  Y  |->  ( z  .(+)  y )
) )
60 oveq2 5882 . . . . . . 7  |-  ( y  =  x  ->  (
z  .(+)  y )  =  ( z  .(+)  x ) )
6160cbvmptv 4127 . . . . . 6  |-  ( y  e.  Y  |->  ( z 
.(+)  y ) )  =  ( x  e.  Y  |->  ( z  .(+)  x ) )
6259, 61syl6eq 2344 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( F `  z )  =  ( x  e.  Y  |->  ( z  .(+)  x )
) )
63 oveq2 5882 . . . . 5  |-  ( x  =  ( w  .(+)  y )  ->  ( z  .(+)  x )  =  ( z  .(+)  ( w  .(+) 
y ) ) )
6447, 53, 62, 63fmptco 5707 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  o.  ( F `  w
) )  =  ( y  e.  Y  |->  ( z  .(+)  ( w  .(+) 
y ) ) ) )
6541, 64eqtrd 2328 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )
( +g  `  H ) ( F `  w
) )  =  ( y  e.  Y  |->  ( z  .(+)  ( w  .(+) 
y ) ) ) )
6622, 34, 653eqtr4d 2338 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( F `  ( z ( +g  `  G ) w ) )  =  ( ( F `  z ) ( +g  `  H
) ( F `  w ) ) )
671, 2, 3, 4, 5, 9, 17, 66isghmd 14708 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  F  e.  ( G  GrpHom  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801    e. cmpt 4093    X. cxp 4703    o. ccom 4709   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378    GrpHom cghm 14696    GrpAct cga 14759   SymGrpcsymg 14785
This theorem is referenced by:  cayleylem1  14803  curgrpact  25475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-tset 13243  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-ghm 14697  df-ga 14760  df-symg 14786
  Copyright terms: Public domain W3C validator