MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  galcan Structured version   Unicode version

Theorem galcan 15073
Description: The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
galcan.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
galcan  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( ( A  .(+)  B )  =  ( A  .(+)  C )  <-> 
B  =  C ) )

Proof of Theorem galcan
StepHypRef Expression
1 oveq2 6081 . . 3  |-  ( ( A  .(+)  B )  =  ( A  .(+)  C )  ->  ( (
( inv g `  G ) `  A
)  .(+)  ( A  .(+)  B ) )  =  ( ( ( inv g `  G ) `  A
)  .(+)  ( A  .(+)  C ) ) )
2 simpl 444 . . . . . . . 8  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
3 gagrp 15061 . . . . . . . 8  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
42, 3syl 16 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  G  e.  Grp )
5 simpr1 963 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  A  e.  X )
6 galcan.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
7 eqid 2435 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
8 eqid 2435 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
9 eqid 2435 . . . . . . . 8  |-  ( inv g `  G )  =  ( inv g `  G )
106, 7, 8, 9grplinv 14843 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( inv g `  G ) `
 A ) ( +g  `  G ) A )  =  ( 0g `  G ) )
114, 5, 10syl2anc 643 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( inv g `  G ) `  A
) ( +g  `  G
) A )  =  ( 0g `  G
) )
1211oveq1d 6088 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( ( inv g `  G ) `  A
) ( +g  `  G
) A )  .(+)  B )  =  ( ( 0g `  G ) 
.(+)  B ) )
136, 9grpinvcl 14842 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( inv g `  G ) `  A
)  e.  X )
144, 5, 13syl2anc 643 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( ( inv g `  G ) `
 A )  e.  X )
15 simpr2 964 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  B  e.  Y )
166, 7gaass 15066 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
( ( inv g `  G ) `  A
)  e.  X  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( (
( ( inv g `  G ) `  A
) ( +g  `  G
) A )  .(+)  B )  =  ( ( ( inv g `  G ) `  A
)  .(+)  ( A  .(+)  B ) ) )
172, 14, 5, 15, 16syl13anc 1186 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( ( inv g `  G ) `  A
) ( +g  `  G
) A )  .(+)  B )  =  ( ( ( inv g `  G ) `  A
)  .(+)  ( A  .(+)  B ) ) )
188gagrpid 15063 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  B  e.  Y )  ->  (
( 0g `  G
)  .(+)  B )  =  B )
192, 15, 18syl2anc 643 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( ( 0g `  G )  .(+)  B )  =  B )
2012, 17, 193eqtr3d 2475 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( inv g `  G ) `  A
)  .(+)  ( A  .(+)  B ) )  =  B )
2111oveq1d 6088 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( ( inv g `  G ) `  A
) ( +g  `  G
) A )  .(+)  C )  =  ( ( 0g `  G ) 
.(+)  C ) )
22 simpr3 965 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  C  e.  Y )
236, 7gaass 15066 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
( ( inv g `  G ) `  A
)  e.  X  /\  A  e.  X  /\  C  e.  Y )
)  ->  ( (
( ( inv g `  G ) `  A
) ( +g  `  G
) A )  .(+)  C )  =  ( ( ( inv g `  G ) `  A
)  .(+)  ( A  .(+)  C ) ) )
242, 14, 5, 22, 23syl13anc 1186 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( ( inv g `  G ) `  A
) ( +g  `  G
) A )  .(+)  C )  =  ( ( ( inv g `  G ) `  A
)  .(+)  ( A  .(+)  C ) ) )
258gagrpid 15063 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  C  e.  Y )  ->  (
( 0g `  G
)  .(+)  C )  =  C )
262, 22, 25syl2anc 643 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( ( 0g `  G )  .(+)  C )  =  C )
2721, 24, 263eqtr3d 2475 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( inv g `  G ) `  A
)  .(+)  ( A  .(+)  C ) )  =  C )
2820, 27eqeq12d 2449 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( (
( ( inv g `  G ) `  A
)  .(+)  ( A  .(+)  B ) )  =  ( ( ( inv g `  G ) `  A
)  .(+)  ( A  .(+)  C ) )  <->  B  =  C ) )
291, 28syl5ib 211 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( ( A  .(+)  B )  =  ( A  .(+)  C )  ->  B  =  C ) )
30 oveq2 6081 . 2  |-  ( B  =  C  ->  ( A  .(+)  B )  =  ( A  .(+)  C ) )
3129, 30impbid1 195 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Y )
)  ->  ( ( A  .(+)  B )  =  ( A  .(+)  C )  <-> 
B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   0gc0g 13715   Grpcgrp 14677   inv gcminusg 14678    GrpAct cga 15058
This theorem is referenced by:  gacan  15074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-map 7012  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-ga 15059
  Copyright terms: Public domain W3C validator