MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gass Structured version   Unicode version

Theorem gass 15078
Description: A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gass.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
gass  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  ->  (
(  .(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z )  <->  A. x  e.  X  A. y  e.  Z  ( x  .(+)  y )  e.  Z ) )
Distinct variable groups:    x, y, G    x, X, y    x, Y, y    x,  .(+) , y    x, Z, y

Proof of Theorem gass
Dummy variables  v  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 6213 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  Z )  ->  ( x (  .(+)  |`  ( X  X.  Z
) ) y )  =  ( x  .(+)  y ) )
21adantl 453 . . . 4  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  (  .(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z ) )  /\  ( x  e.  X  /\  y  e.  Z ) )  -> 
( x (  .(+)  |`  ( X  X.  Z
) ) y )  =  ( x  .(+)  y ) )
3 gass.1 . . . . . . 7  |-  X  =  ( Base `  G
)
43gaf 15072 . . . . . 6  |-  ( ( 
.(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z )  ->  (  .(+)  |`  ( X  X.  Z ) ) : ( X  X.  Z ) --> Z )
54adantl 453 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  (  .(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z ) )  ->  (  .(+)  |`  ( X  X.  Z
) ) : ( X  X.  Z ) --> Z )
65fovrnda 6217 . . . 4  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  (  .(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z ) )  /\  ( x  e.  X  /\  y  e.  Z ) )  -> 
( x (  .(+)  |`  ( X  X.  Z
) ) y )  e.  Z )
72, 6eqeltrrd 2511 . . 3  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  (  .(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z ) )  /\  ( x  e.  X  /\  y  e.  Z ) )  -> 
( x  .(+)  y )  e.  Z )
87ralrimivva 2798 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  (  .(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z ) )  ->  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)
9 gagrp 15069 . . . . 5  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
109ad2antrr 707 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  G  e.  Grp )
11 gaset 15070 . . . . . . 7  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  Y  e.  _V )
1211adantr 452 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  ->  Y  e.  _V )
13 simpr 448 . . . . . 6  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  ->  Z  C_  Y )
1412, 13ssexd 4350 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  ->  Z  e.  _V )
1514adantr 452 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  Z  e.  _V )
1610, 15jca 519 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  ( G  e.  Grp  /\  Z  e.  _V ) )
173gaf 15072 . . . . . . . 8  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  .(+)  : ( X  X.  Y ) --> Y )
1817ad2antrr 707 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  .(+)  : ( X  X.  Y ) --> Y )
19 ffn 5591 . . . . . . 7  |-  (  .(+)  : ( X  X.  Y
) --> Y  ->  .(+)  Fn  ( X  X.  Y ) )
2018, 19syl 16 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  .(+)  Fn  ( X  X.  Y ) )
21 simplr 732 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  Z  C_  Y )
22 xpss2 4985 . . . . . . 7  |-  ( Z 
C_  Y  ->  ( X  X.  Z )  C_  ( X  X.  Y
) )
2321, 22syl 16 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  ( X  X.  Z )  C_  ( X  X.  Y
) )
24 fnssres 5558 . . . . . 6  |-  ( ( 
.(+)  Fn  ( X  X.  Y )  /\  ( X  X.  Z )  C_  ( X  X.  Y
) )  ->  (  .(+) 
|`  ( X  X.  Z ) )  Fn  ( X  X.  Z
) )
2520, 23, 24syl2anc 643 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  (  .(+) 
|`  ( X  X.  Z ) )  Fn  ( X  X.  Z
) )
26 simpr 448 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)
271eleq1d 2502 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Z )  ->  ( ( x ( 
.(+)  |`  ( X  X.  Z ) ) y )  e.  Z  <->  ( x  .(+) 
y )  e.  Z
) )
2827ralbidva 2721 . . . . . . 7  |-  ( x  e.  X  ->  ( A. y  e.  Z  ( x (  .(+)  |`  ( X  X.  Z
) ) y )  e.  Z  <->  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
) )
2928ralbiia 2737 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Z  (
x (  .(+)  |`  ( X  X.  Z ) ) y )  e.  Z  <->  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )
3026, 29sylibr 204 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  A. x  e.  X  A. y  e.  Z  ( x
(  .(+)  |`  ( X  X.  Z ) ) y )  e.  Z )
31 ffnov 6174 . . . . 5  |-  ( ( 
.(+)  |`  ( X  X.  Z ) ) : ( X  X.  Z
) --> Z  <->  ( (  .(+) 
|`  ( X  X.  Z ) )  Fn  ( X  X.  Z
)  /\  A. x  e.  X  A. y  e.  Z  ( x
(  .(+)  |`  ( X  X.  Z ) ) y )  e.  Z ) )
3225, 30, 31sylanbrc 646 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  (  .(+) 
|`  ( X  X.  Z ) ) : ( X  X.  Z
) --> Z )
33 eqid 2436 . . . . . . . . . 10  |-  ( 0g
`  G )  =  ( 0g `  G
)
343, 33grpidcl 14833 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
3510, 34syl 16 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  ( 0g `  G )  e.  X )
36 ovres 6213 . . . . . . . 8  |-  ( ( ( 0g `  G
)  e.  X  /\  z  e.  Z )  ->  ( ( 0g `  G ) (  .(+)  |`  ( X  X.  Z
) ) z )  =  ( ( 0g
`  G )  .(+)  z ) )
3735, 36sylan 458 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  /\  z  e.  Z )  ->  (
( 0g `  G
) (  .(+)  |`  ( X  X.  Z ) ) z )  =  ( ( 0g `  G
)  .(+)  z ) )
3821sselda 3348 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  /\  z  e.  Z )  ->  z  e.  Y )
39 simpll 731 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  .(+)  e.  ( G  GrpAct  Y ) )
4033gagrpid 15071 . . . . . . . . 9  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  z  e.  Y )  ->  (
( 0g `  G
)  .(+)  z )  =  z )
4139, 40sylan 458 . . . . . . . 8  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  /\  z  e.  Y )  ->  (
( 0g `  G
)  .(+)  z )  =  z )
4238, 41syldan 457 . . . . . . 7  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  /\  z  e.  Z )  ->  (
( 0g `  G
)  .(+)  z )  =  z )
4337, 42eqtrd 2468 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  /\  z  e.  Z )  ->  (
( 0g `  G
) (  .(+)  |`  ( X  X.  Z ) ) z )  =  z )
4439ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
45 simprl 733 . . . . . . . . . 10  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  u  e.  X )
46 simprr 734 . . . . . . . . . 10  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  v  e.  X )
4738adantr 452 . . . . . . . . . 10  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  z  e.  Y )
48 eqid 2436 . . . . . . . . . . 11  |-  ( +g  `  G )  =  ( +g  `  G )
493, 48gaass 15074 . . . . . . . . . 10  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
u  e.  X  /\  v  e.  X  /\  z  e.  Y )
)  ->  ( (
u ( +g  `  G
) v )  .(+)  z )  =  ( u 
.(+)  ( v  .(+)  z ) ) )
5044, 45, 46, 47, 49syl13anc 1186 . . . . . . . . 9  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
u ( +g  `  G
) v )  .(+)  z )  =  ( u 
.(+)  ( v  .(+)  z ) ) )
51 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  z  e.  Z )
52 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)
53 proplem2 13914 . . . . . . . . . . 11  |-  ( ( ( v  e.  X  /\  z  e.  Z
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  ->  ( v  .(+)  z )  e.  Z
)
5446, 51, 52, 53syl21anc 1183 . . . . . . . . . 10  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( v  .(+)  z )  e.  Z
)
55 ovres 6213 . . . . . . . . . 10  |-  ( ( u  e.  X  /\  ( v  .(+)  z )  e.  Z )  -> 
( u (  .(+)  |`  ( X  X.  Z
) ) ( v 
.(+)  z ) )  =  ( u  .(+)  ( v  .(+)  z )
) )
5645, 54, 55syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( u
(  .(+)  |`  ( X  X.  Z ) ) ( v  .(+)  z )
)  =  ( u 
.(+)  ( v  .(+)  z ) ) )
5750, 56eqtr4d 2471 . . . . . . . 8  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
u ( +g  `  G
) v )  .(+)  z )  =  ( u (  .(+)  |`  ( X  X.  Z ) ) ( v  .(+)  z ) ) )
5810ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  G  e.  Grp )
593, 48grpcl 14818 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  v  e.  X )  ->  ( u ( +g  `  G ) v )  e.  X )
6058, 45, 46, 59syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( u
( +g  `  G ) v )  e.  X
)
61 ovres 6213 . . . . . . . . 9  |-  ( ( ( u ( +g  `  G ) v )  e.  X  /\  z  e.  Z )  ->  (
( u ( +g  `  G ) v ) (  .(+)  |`  ( X  X.  Z ) ) z )  =  ( ( u ( +g  `  G ) v ) 
.(+)  z ) )
6260, 51, 61syl2anc 643 . . . . . . . 8  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
u ( +g  `  G
) v ) ( 
.(+)  |`  ( X  X.  Z ) ) z )  =  ( ( u ( +g  `  G
) v )  .(+)  z ) )
63 ovres 6213 . . . . . . . . . 10  |-  ( ( v  e.  X  /\  z  e.  Z )  ->  ( v (  .(+)  |`  ( X  X.  Z
) ) z )  =  ( v  .(+)  z ) )
6446, 51, 63syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( v
(  .(+)  |`  ( X  X.  Z ) ) z )  =  ( v 
.(+)  z ) )
6564oveq2d 6097 . . . . . . . 8  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( u
(  .(+)  |`  ( X  X.  Z ) ) ( v (  .(+)  |`  ( X  X.  Z ) ) z ) )  =  ( u (  .(+)  |`  ( X  X.  Z
) ) ( v 
.(+)  z ) ) )
6657, 62, 653eqtr4d 2478 . . . . . . 7  |-  ( ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y
)  /\  A. x  e.  X  A. y  e.  Z  ( x  .(+) 
y )  e.  Z
)  /\  z  e.  Z )  /\  (
u  e.  X  /\  v  e.  X )
)  ->  ( (
u ( +g  `  G
) v ) ( 
.(+)  |`  ( X  X.  Z ) ) z )  =  ( u (  .(+)  |`  ( X  X.  Z ) ) ( v (  .(+)  |`  ( X  X.  Z
) ) z ) ) )
6766ralrimivva 2798 . . . . . 6  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  /\  z  e.  Z )  ->  A. u  e.  X  A. v  e.  X  ( (
u ( +g  `  G
) v ) ( 
.(+)  |`  ( X  X.  Z ) ) z )  =  ( u (  .(+)  |`  ( X  X.  Z ) ) ( v (  .(+)  |`  ( X  X.  Z
) ) z ) ) )
6843, 67jca 519 . . . . 5  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  /\  z  e.  Z )  ->  (
( ( 0g `  G ) (  .(+)  |`  ( X  X.  Z
) ) z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) (  .(+)  |`  ( X  X.  Z ) ) z )  =  ( u (  .(+)  |`  ( X  X.  Z ) ) ( v (  .(+)  |`  ( X  X.  Z
) ) z ) ) ) )
6968ralrimiva 2789 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  A. z  e.  Z  ( (
( 0g `  G
) (  .(+)  |`  ( X  X.  Z ) ) z )  =  z  /\  A. u  e.  X  A. v  e.  X  ( ( u ( +g  `  G
) v ) ( 
.(+)  |`  ( X  X.  Z ) ) z )  =  ( u (  .(+)  |`  ( X  X.  Z ) ) ( v (  .(+)  |`  ( X  X.  Z
) ) z ) ) ) )
7032, 69jca 519 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  (
(  .(+)  |`  ( X  X.  Z ) ) : ( X  X.  Z
) --> Z  /\  A. z  e.  Z  (
( ( 0g `  G ) (  .(+)  |`  ( X  X.  Z
) ) z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) (  .(+)  |`  ( X  X.  Z ) ) z )  =  ( u (  .(+)  |`  ( X  X.  Z ) ) ( v (  .(+)  |`  ( X  X.  Z
) ) z ) ) ) ) )
713, 48, 33isga 15068 . . 3  |-  ( ( 
.(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z )  <-> 
( ( G  e. 
Grp  /\  Z  e.  _V )  /\  (
(  .(+)  |`  ( X  X.  Z ) ) : ( X  X.  Z
) --> Z  /\  A. z  e.  Z  (
( ( 0g `  G ) (  .(+)  |`  ( X  X.  Z
) ) z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) (  .(+)  |`  ( X  X.  Z ) ) z )  =  ( u (  .(+)  |`  ( X  X.  Z ) ) ( v (  .(+)  |`  ( X  X.  Z
) ) z ) ) ) ) ) )
7216, 70, 71sylanbrc 646 . 2  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  /\  A. x  e.  X  A. y  e.  Z  (
x  .(+)  y )  e.  Z )  ->  (  .(+) 
|`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z ) )
738, 72impbida 806 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  Z  C_  Y )  ->  (
(  .(+)  |`  ( X  X.  Z ) )  e.  ( G  GrpAct  Z )  <->  A. x  e.  X  A. y  e.  Z  ( x  .(+)  y )  e.  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    C_ wss 3320    X. cxp 4876    |` cres 4880    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   Basecbs 13469   +g cplusg 13529   0gc0g 13723   Grpcgrp 14685    GrpAct cga 15066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-map 7020  df-0g 13727  df-mnd 14690  df-grp 14812  df-ga 15067
  Copyright terms: Public domain W3C validator