MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacl Unicode version

Theorem gastacl 14763
Description: The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1  |-  X  =  ( Base `  G
)
gasta.2  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
Assertion
Ref Expression
gastacl  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  e.  (SubGrp `  G )
)
Distinct variable groups:    u,  .(+)    u, A   
u, G    u, X
Allowed substitution hints:    H( u)    Y( u)

Proof of Theorem gastacl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gasta.2 . . . 4  |-  H  =  { u  e.  X  |  ( u  .(+)  A )  =  A }
2 ssrab2 3258 . . . 4  |-  { u  e.  X  |  (
u  .(+)  A )  =  A }  C_  X
31, 2eqsstri 3208 . . 3  |-  H  C_  X
43a1i 10 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  C_  X )
5 gagrp 14746 . . . . . 6  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  G  e.  Grp )
65adantr 451 . . . . 5  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  G  e.  Grp )
7 gasta.1 . . . . . 6  |-  X  =  ( Base `  G
)
8 eqid 2283 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
97, 8grpidcl 14510 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
106, 9syl 15 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( 0g `  G )  e.  X )
118gagrpid 14748 . . . 4  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  (
( 0g `  G
)  .(+)  A )  =  A )
12 oveq1 5865 . . . . . 6  |-  ( u  =  ( 0g `  G )  ->  (
u  .(+)  A )  =  ( ( 0g `  G )  .(+)  A ) )
1312eqeq1d 2291 . . . . 5  |-  ( u  =  ( 0g `  G )  ->  (
( u  .(+)  A )  =  A  <->  ( ( 0g `  G )  .(+)  A )  =  A ) )
1413, 1elrab2 2925 . . . 4  |-  ( ( 0g `  G )  e.  H  <->  ( ( 0g `  G )  e.  X  /\  ( ( 0g `  G ) 
.(+)  A )  =  A ) )
1510, 11, 14sylanbrc 645 . . 3  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( 0g `  G )  e.  H )
16 ne0i 3461 . . 3  |-  ( ( 0g `  G )  e.  H  ->  H  =/=  (/) )
1715, 16syl 15 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  =/=  (/) )
18 simpll 730 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  .(+)  e.  ( G  GrpAct  Y ) )
1918, 5syl 15 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  G  e.  Grp )
20 simpr 447 . . . . . . . . . . 11  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  x  e.  H )
21 oveq1 5865 . . . . . . . . . . . . 13  |-  ( u  =  x  ->  (
u  .(+)  A )  =  ( x  .(+)  A ) )
2221eqeq1d 2291 . . . . . . . . . . . 12  |-  ( u  =  x  ->  (
( u  .(+)  A )  =  A  <->  ( x  .(+) 
A )  =  A ) )
2322, 1elrab2 2925 . . . . . . . . . . 11  |-  ( x  e.  H  <->  ( x  e.  X  /\  (
x  .(+)  A )  =  A ) )
2420, 23sylib 188 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( x  e.  X  /\  (
x  .(+)  A )  =  A ) )
2524simpld 445 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  x  e.  X )
2625adantrr 697 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  x  e.  X )
27 simprr 733 . . . . . . . . . 10  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  y  e.  H )
28 oveq1 5865 . . . . . . . . . . . 12  |-  ( u  =  y  ->  (
u  .(+)  A )  =  ( y  .(+)  A ) )
2928eqeq1d 2291 . . . . . . . . . . 11  |-  ( u  =  y  ->  (
( u  .(+)  A )  =  A  <->  ( y  .(+)  A )  =  A ) )
3029, 1elrab2 2925 . . . . . . . . . 10  |-  ( y  e.  H  <->  ( y  e.  X  /\  (
y  .(+)  A )  =  A ) )
3127, 30sylib 188 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
y  e.  X  /\  ( y  .(+)  A )  =  A ) )
3231simpld 445 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  y  e.  X )
33 eqid 2283 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
347, 33grpcl 14495 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  y  e.  X )  ->  ( x ( +g  `  G ) y )  e.  X )
3519, 26, 32, 34syl3anc 1182 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x ( +g  `  G
) y )  e.  X )
36 simplr 731 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  A  e.  Y )
377, 33gaass 14751 . . . . . . . . 9  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
x  e.  X  /\  y  e.  X  /\  A  e.  Y )
)  ->  ( (
x ( +g  `  G
) y )  .(+)  A )  =  ( x 
.(+)  ( y  .(+)  A ) ) )
3818, 26, 32, 36, 37syl13anc 1184 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
( x ( +g  `  G ) y ) 
.(+)  A )  =  ( x  .(+)  ( y  .(+)  A ) ) )
3931simprd 449 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
y  .(+)  A )  =  A )
4039oveq2d 5874 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x  .(+)  ( y  .(+)  A ) )  =  ( x  .(+)  A )
)
4124simprd 449 . . . . . . . . 9  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( x  .(+) 
A )  =  A )
4241adantrr 697 . . . . . . . 8  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x  .(+)  A )  =  A )
4338, 40, 423eqtrd 2319 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
( x ( +g  `  G ) y ) 
.(+)  A )  =  A )
44 oveq1 5865 . . . . . . . . 9  |-  ( u  =  ( x ( +g  `  G ) y )  ->  (
u  .(+)  A )  =  ( ( x ( +g  `  G ) y )  .(+)  A ) )
4544eqeq1d 2291 . . . . . . . 8  |-  ( u  =  ( x ( +g  `  G ) y )  ->  (
( u  .(+)  A )  =  A  <->  ( (
x ( +g  `  G
) y )  .(+)  A )  =  A ) )
4645, 1elrab2 2925 . . . . . . 7  |-  ( ( x ( +g  `  G
) y )  e.  H  <->  ( ( x ( +g  `  G
) y )  e.  X  /\  ( ( x ( +g  `  G
) y )  .(+)  A )  =  A ) )
4735, 43, 46sylanbrc 645 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  ( x  e.  H  /\  y  e.  H
) )  ->  (
x ( +g  `  G
) y )  e.  H )
4847anassrs 629 . . . . 5  |-  ( ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  /\  y  e.  H )  ->  (
x ( +g  `  G
) y )  e.  H )
4948ralrimiva 2626 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  A. y  e.  H  ( x
( +g  `  G ) y )  e.  H
)
50 simpll 730 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  .(+)  e.  ( G  GrpAct  Y ) )
5150, 5syl 15 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  G  e.  Grp )
52 eqid 2283 . . . . . . 7  |-  ( inv g `  G )  =  ( inv g `  G )
537, 52grpinvcl 14527 . . . . . 6  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( inv g `  G ) `  x
)  e.  X )
5451, 25, 53syl2anc 642 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( ( inv g `  G ) `
 x )  e.  X )
55 simplr 731 . . . . . . 7  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  A  e.  Y )
567, 52gacan 14759 . . . . . . 7  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  (
x  e.  X  /\  A  e.  Y  /\  A  e.  Y )
)  ->  ( (
x  .(+)  A )  =  A  <->  ( ( ( inv g `  G
) `  x )  .(+)  A )  =  A ) )
5750, 25, 55, 55, 56syl13anc 1184 . . . . . 6  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( (
x  .(+)  A )  =  A  <->  ( ( ( inv g `  G
) `  x )  .(+)  A )  =  A ) )
5841, 57mpbid 201 . . . . 5  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( (
( inv g `  G ) `  x
)  .(+)  A )  =  A )
59 oveq1 5865 . . . . . . 7  |-  ( u  =  ( ( inv g `  G ) `
 x )  -> 
( u  .(+)  A )  =  ( ( ( inv g `  G
) `  x )  .(+)  A ) )
6059eqeq1d 2291 . . . . . 6  |-  ( u  =  ( ( inv g `  G ) `
 x )  -> 
( ( u  .(+)  A )  =  A  <->  ( (
( inv g `  G ) `  x
)  .(+)  A )  =  A ) )
6160, 1elrab2 2925 . . . . 5  |-  ( ( ( inv g `  G ) `  x
)  e.  H  <->  ( (
( inv g `  G ) `  x
)  e.  X  /\  ( ( ( inv g `  G ) `
 x )  .(+)  A )  =  A ) )
6254, 58, 61sylanbrc 645 . . . 4  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( ( inv g `  G ) `
 x )  e.  H )
6349, 62jca 518 . . 3  |-  ( ( (  .(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  /\  x  e.  H
)  ->  ( A. y  e.  H  (
x ( +g  `  G
) y )  e.  H  /\  ( ( inv g `  G
) `  x )  e.  H ) )
6463ralrimiva 2626 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  A. x  e.  H  ( A. y  e.  H  (
x ( +g  `  G
) y )  e.  H  /\  ( ( inv g `  G
) `  x )  e.  H ) )
657, 33, 52issubg2 14636 . . 3  |-  ( G  e.  Grp  ->  ( H  e.  (SubGrp `  G
)  <->  ( H  C_  X  /\  H  =/=  (/)  /\  A. x  e.  H  ( A. y  e.  H  ( x ( +g  `  G ) y )  e.  H  /\  (
( inv g `  G ) `  x
)  e.  H ) ) ) )
666, 65syl 15 . 2  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  ( H  e.  (SubGrp `  G
)  <->  ( H  C_  X  /\  H  =/=  (/)  /\  A. x  e.  H  ( A. y  e.  H  ( x ( +g  `  G ) y )  e.  H  /\  (
( inv g `  G ) `  x
)  e.  H ) ) ) )
674, 17, 64, 66mpbir3and 1135 1  |-  ( ( 
.(+)  e.  ( G  GrpAct  Y )  /\  A  e.  Y )  ->  H  e.  (SubGrp `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {crab 2547    C_ wss 3152   (/)c0 3455   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   inv gcminusg 14363  SubGrpcsubg 14615    GrpAct cga 14743
This theorem is referenced by:  gastacos  14764  orbstafun  14765  orbstaval  14766  orbsta  14767  orbsta2  14768  sylow1lem5  14913
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-subg 14618  df-ga 14744
  Copyright terms: Public domain W3C validator