MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcddiv Structured version   Unicode version

Theorem gcddiv 13041
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcddiv  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  ( C  ||  A  /\  C  ||  B ) )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )

Proof of Theorem gcddiv
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 10295 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  ZZ )
213ad2ant3 980 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  C  e.  ZZ )
3 simp1 957 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  A  e.  ZZ )
4 divides 12846 . . . . . 6  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  ( C  ||  A  <->  E. a  e.  ZZ  (
a  x.  C )  =  A ) )
52, 3, 4syl2anc 643 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  ||  A  <->  E. a  e.  ZZ  ( a  x.  C )  =  A ) )
6 simp2 958 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  B  e.  ZZ )
7 divides 12846 . . . . . 6  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  ||  B  <->  E. b  e.  ZZ  (
b  x.  C )  =  B ) )
82, 6, 7syl2anc 643 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  ||  B  <->  E. b  e.  ZZ  ( b  x.  C )  =  B ) )
95, 8anbi12d 692 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  <-> 
( E. a  e.  ZZ  ( a  x.  C )  =  A  /\  E. b  e.  ZZ  ( b  x.  C )  =  B ) ) )
10 reeanv 2867 . . . 4  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  <-> 
( E. a  e.  ZZ  ( a  x.  C )  =  A  /\  E. b  e.  ZZ  ( b  x.  C )  =  B ) )
119, 10syl6bbr 255 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  <->  E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B ) ) )
12 gcdcl 13009 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  gcd  b
)  e.  NN0 )
1312nn0cnd 10268 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  gcd  b
)  e.  CC )
14133adant3 977 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
a  gcd  b )  e.  CC )
15 nncn 10000 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  e.  CC )
16153ad2ant3 980 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C  e.  CC )
17 nnne0 10024 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  =/=  0 )
18173ad2ant3 980 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C  =/=  0 )
1914, 16, 18divcan4d 9788 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  gcd  b )  x.  C
)  /  C )  =  ( a  gcd  b ) )
20 nnnn0 10220 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  e.  NN0 )
21 mulgcdr 13040 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN0 )  ->  (
( a  x.  C
)  gcd  ( b  x.  C ) )  =  ( ( a  gcd  b )  x.  C
) )
2220, 21syl3an3 1219 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( a  x.  C
)  gcd  ( b  x.  C ) )  =  ( ( a  gcd  b )  x.  C
) )
2322oveq1d 6088 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  gcd  (
b  x.  C ) )  /  C )  =  ( ( ( a  gcd  b )  x.  C )  /  C ) )
24 zcn 10279 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
25243ad2ant1 978 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  a  e.  CC )
2625, 16, 18divcan4d 9788 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( a  x.  C
)  /  C )  =  a )
27 zcn 10279 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
28273ad2ant2 979 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  b  e.  CC )
2928, 16, 18divcan4d 9788 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( b  x.  C
)  /  C )  =  b )
3026, 29oveq12d 6091 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  /  C
)  gcd  ( (
b  x.  C )  /  C ) )  =  ( a  gcd  b ) )
3119, 23, 303eqtr4d 2477 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  gcd  (
b  x.  C ) )  /  C )  =  ( ( ( a  x.  C )  /  C )  gcd  ( ( b  x.  C )  /  C
) ) )
32 oveq12 6082 . . . . . . . . . 10  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( a  x.  C )  gcd  ( b  x.  C
) )  =  ( A  gcd  B ) )
3332oveq1d 6088 . . . . . . . . 9  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( a  x.  C )  gcd  ( b  x.  C ) )  /  C )  =  ( ( A  gcd  B
)  /  C ) )
34 oveq1 6080 . . . . . . . . . 10  |-  ( ( a  x.  C )  =  A  ->  (
( a  x.  C
)  /  C )  =  ( A  /  C ) )
35 oveq1 6080 . . . . . . . . . 10  |-  ( ( b  x.  C )  =  B  ->  (
( b  x.  C
)  /  C )  =  ( B  /  C ) )
3634, 35oveqan12d 6092 . . . . . . . . 9  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( a  x.  C )  /  C )  gcd  ( ( b  x.  C )  /  C
) )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )
3733, 36eqeq12d 2449 . . . . . . . 8  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( ( a  x.  C
)  gcd  ( b  x.  C ) )  /  C )  =  ( ( ( a  x.  C )  /  C
)  gcd  ( (
b  x.  C )  /  C ) )  <-> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) )
3831, 37syl5ibcom 212 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  =  A  /\  ( b  x.  C )  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
39383expa 1153 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  C  e.  NN )  ->  ( ( ( a  x.  C )  =  A  /\  (
b  x.  C )  =  B )  -> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) )
4039expcom 425 . . . . 5  |-  ( C  e.  NN  ->  (
( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( a  x.  C )  =  A  /\  (
b  x.  C )  =  B )  -> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) ) )
4140rexlimdvv 2828 . . . 4  |-  ( C  e.  NN  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
42413ad2ant3 980 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
4311, 42sylbid 207 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
4443imp 419 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  ( C  ||  A  /\  C  ||  B ) )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698   class class class wbr 4204  (class class class)co 6073   CCcc 8980   0cc0 8982    x. cmul 8987    / cdiv 9669   NNcn 9992   NN0cn0 10213   ZZcz 10274    || cdivides 12844    gcd cgcd 12998
This theorem is referenced by:  sqgcd  13050  divgcdodd  13111  divnumden  13132  pythagtriplem19  13199  hashgcdlem  27484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-dvds 12845  df-gcd 12999
  Copyright terms: Public domain W3C validator