MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdi Unicode version

Theorem gcdi 13368
Description: Calculate a GCD via Euclid's algorithm. (Contributed by Mario Carneiro, 19-Feb-2014.)
Hypotheses
Ref Expression
gcdi.1  |-  K  e. 
NN0
gcdi.2  |-  R  e. 
NN0
gcdi.3  |-  N  e. 
NN0
gcdi.5  |-  ( N  gcd  R )  =  G
gcdi.4  |-  ( ( K  x.  N )  +  R )  =  M
Assertion
Ref Expression
gcdi  |-  ( M  gcd  N )  =  G

Proof of Theorem gcdi
StepHypRef Expression
1 gcdi.1 . . . . . . 7  |-  K  e. 
NN0
2 gcdi.3 . . . . . . 7  |-  N  e. 
NN0
31, 2nn0mulcli 10218 . . . . . 6  |-  ( K  x.  N )  e. 
NN0
43nn0cni 10193 . . . . 5  |-  ( K  x.  N )  e.  CC
5 gcdi.2 . . . . . 6  |-  R  e. 
NN0
65nn0cni 10193 . . . . 5  |-  R  e.  CC
7 gcdi.4 . . . . 5  |-  ( ( K  x.  N )  +  R )  =  M
84, 6, 7addcomli 9218 . . . 4  |-  ( R  +  ( K  x.  N ) )  =  M
98oveq2i 6055 . . 3  |-  ( N  gcd  ( R  +  ( K  x.  N
) ) )  =  ( N  gcd  M
)
101nn0zi 10266 . . . 4  |-  K  e.  ZZ
112nn0zi 10266 . . . 4  |-  N  e.  ZZ
125nn0zi 10266 . . . 4  |-  R  e.  ZZ
13 gcdaddm 12988 . . . 4  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  R  e.  ZZ )  ->  ( N  gcd  R )  =  ( N  gcd  ( R  +  ( K  x.  N ) ) ) )
1410, 11, 12, 13mp3an 1279 . . 3  |-  ( N  gcd  R )  =  ( N  gcd  ( R  +  ( K  x.  N ) ) )
151, 2, 5numcl 10353 . . . . . 6  |-  ( ( K  x.  N )  +  R )  e. 
NN0
167, 15eqeltrri 2479 . . . . 5  |-  M  e. 
NN0
1716nn0zi 10266 . . . 4  |-  M  e.  ZZ
18 gcdcom 12979 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( N  gcd  M ) )
1917, 11, 18mp2an 654 . . 3  |-  ( M  gcd  N )  =  ( N  gcd  M
)
209, 14, 193eqtr4i 2438 . 2  |-  ( N  gcd  R )  =  ( M  gcd  N
)
21 gcdi.5 . 2  |-  ( N  gcd  R )  =  G
2220, 21eqtr3i 2430 1  |-  ( M  gcd  N )  =  G
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1721  (class class class)co 6044    + caddc 8953    x. cmul 8955   NN0cn0 10181   ZZcz 10242    gcd cgcd 12965
This theorem is referenced by:  1259lem5  13413  2503lem3  13417  4001lem4  13422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-seq 11283  df-exp 11342  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-dvds 12812  df-gcd 12966
  Copyright terms: Public domain W3C validator