MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch2 Unicode version

Theorem gch2 8317
Description: It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gch2  |-  (GCH  =  _V 
<->  ran  aleph  C_ GCH )

Proof of Theorem gch2
StepHypRef Expression
1 ssv 3211 . . 3  |-  ran  aleph  C_  _V
2 sseq2 3213 . . 3  |-  (GCH  =  _V  ->  ( ran  aleph  C_ GCH  <->  ran  aleph  C_  _V ) )
31, 2mpbiri 224 . 2  |-  (GCH  =  _V  ->  ran  aleph  C_ GCH )
4 cardidm 7608 . . . . . . . 8  |-  ( card `  ( card `  x
) )  =  (
card `  x )
5 iscard3 7736 . . . . . . . 8  |-  ( (
card `  ( card `  x ) )  =  ( card `  x
)  <->  ( card `  x
)  e.  ( om  u.  ran  aleph ) )
64, 5mpbi 199 . . . . . . 7  |-  ( card `  x )  e.  ( om  u.  ran  aleph )
7 elun 3329 . . . . . . 7  |-  ( (
card `  x )  e.  ( om  u.  ran  aleph
)  <->  ( ( card `  x )  e.  om  \/  ( card `  x
)  e.  ran  aleph ) )
86, 7mpbi 199 . . . . . 6  |-  ( (
card `  x )  e.  om  \/  ( card `  x )  e.  ran  aleph
)
9 fingch 8261 . . . . . . . . 9  |-  Fin  C_ GCH
10 nnfi 7069 . . . . . . . . 9  |-  ( (
card `  x )  e.  om  ->  ( card `  x )  e.  Fin )
119, 10sseldi 3191 . . . . . . . 8  |-  ( (
card `  x )  e.  om  ->  ( card `  x )  e. GCH )
1211a1i 10 . . . . . . 7  |-  ( ran  aleph 
C_ GCH  ->  ( ( card `  x )  e.  om  ->  ( card `  x
)  e. GCH ) )
13 ssel 3187 . . . . . . 7  |-  ( ran  aleph 
C_ GCH  ->  ( ( card `  x )  e.  ran  aleph  ->  ( card `  x
)  e. GCH ) )
1412, 13jaod 369 . . . . . 6  |-  ( ran  aleph 
C_ GCH  ->  ( ( (
card `  x )  e.  om  \/  ( card `  x )  e.  ran  aleph
)  ->  ( card `  x )  e. GCH )
)
158, 14mpi 16 . . . . 5  |-  ( ran  aleph 
C_ GCH  ->  ( card `  x
)  e. GCH )
16 vex 2804 . . . . . . 7  |-  x  e. 
_V
17 alephon 7712 . . . . . . . . . . 11  |-  ( aleph ` 
suc  x )  e.  On
18 simpr 447 . . . . . . . . . . . 12  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  x  e.  On )
19 simpl 443 . . . . . . . . . . . . 13  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  ran  aleph  C_ GCH )
20 alephfnon 7708 . . . . . . . . . . . . . 14  |-  aleph  Fn  On
21 fnfvelrn 5678 . . . . . . . . . . . . . 14  |-  ( (
aleph  Fn  On  /\  x  e.  On )  ->  ( aleph `  x )  e. 
ran  aleph )
2220, 18, 21sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  ( aleph `  x )  e. 
ran  aleph )
2319, 22sseldd 3194 . . . . . . . . . . . 12  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  ( aleph `  x )  e. GCH )
24 suceloni 4620 . . . . . . . . . . . . . . 15  |-  ( x  e.  On  ->  suc  x  e.  On )
2524adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  suc  x  e.  On )
26 fnfvelrn 5678 . . . . . . . . . . . . . 14  |-  ( (
aleph  Fn  On  /\  suc  x  e.  On )  ->  ( aleph `  suc  x )  e.  ran  aleph )
2720, 25, 26sylancr 644 . . . . . . . . . . . . 13  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  ( aleph `  suc  x )  e.  ran  aleph )
2819, 27sseldd 3194 . . . . . . . . . . . 12  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  ( aleph `  suc  x )  e. GCH )
29 gchaleph2 8314 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  ( aleph `  x )  e. GCH  /\  ( aleph `  suc  x )  e. GCH )  ->  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
3018, 23, 28, 29syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
31 isnumi 7595 . . . . . . . . . . 11  |-  ( ( ( aleph `  suc  x )  e.  On  /\  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )  ->  ~P ( aleph `  x )  e.  dom  card )
3217, 30, 31sylancr 644 . . . . . . . . . 10  |-  ( ( ran  aleph  C_ GCH  /\  x  e.  On )  ->  ~P ( aleph `  x )  e.  dom  card )
3332ralrimiva 2639 . . . . . . . . 9  |-  ( ran  aleph 
C_ GCH  ->  A. x  e.  On  ~P ( aleph `  x )  e.  dom  card )
34 dfac12 7791 . . . . . . . . 9  |-  (CHOICE  <->  A. x  e.  On  ~P ( aleph `  x )  e.  dom  card )
3533, 34sylibr 203 . . . . . . . 8  |-  ( ran  aleph 
C_ GCH  -> CHOICE
)
36 dfac10 7779 . . . . . . . 8  |-  (CHOICE  <->  dom  card  =  _V )
3735, 36sylib 188 . . . . . . 7  |-  ( ran  aleph 
C_ GCH  ->  dom  card  =  _V )
3816, 37syl5eleqr 2383 . . . . . 6  |-  ( ran  aleph 
C_ GCH  ->  x  e.  dom  card )
39 cardid2 7602 . . . . . 6  |-  ( x  e.  dom  card  ->  (
card `  x )  ~~  x )
40 engch 8266 . . . . . 6  |-  ( (
card `  x )  ~~  x  ->  ( (
card `  x )  e. GCH  <-> 
x  e. GCH ) )
4138, 39, 403syl 18 . . . . 5  |-  ( ran  aleph 
C_ GCH  ->  ( ( card `  x )  e. GCH  <->  x  e. GCH ) )
4215, 41mpbid 201 . . . 4  |-  ( ran  aleph 
C_ GCH  ->  x  e. GCH )
4316a1i 10 . . . 4  |-  ( ran  aleph 
C_ GCH  ->  x  e.  _V )
4442, 432thd 231 . . 3  |-  ( ran  aleph 
C_ GCH  ->  ( x  e. GCH  <->  x  e.  _V ) )
4544eqrdv 2294 . 2  |-  ( ran  aleph 
C_ GCH  -> GCH  =  _V )
463, 45impbii 180 1  |-  (GCH  =  _V 
<->  ran  aleph  C_ GCH )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    u. cun 3163    C_ wss 3165   ~Pcpw 3638   class class class wbr 4039   Oncon0 4408   suc csuc 4410   omcom 4672   dom cdm 4705   ran crn 4706    Fn wfn 5266   ` cfv 5271    ~~ cen 6876   Fincfn 6879   cardccrd 7584   alephcale 7585  CHOICEwac 7758  GCHcgch 8258
This theorem is referenced by:  gch3  8318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-reg 7322  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-seqom 6476  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-oexp 6501  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-wdom 7289  df-cnf 7379  df-r1 7452  df-rank 7453  df-card 7588  df-aleph 7589  df-ac 7759  df-cda 7810  df-fin4 7929  df-gch 8259
  Copyright terms: Public domain W3C validator