MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch3 Unicode version

Theorem gch3 8302
Description: An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gch3  |-  (GCH  =  _V 
<-> 
A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )

Proof of Theorem gch3
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  x  e.  On )
2 fvex 5539 . . . . 5  |-  ( aleph `  x )  e.  _V
3 simpl 443 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  On )  -> GCH  =  _V )
42, 3syl5eleqr 2370 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  ( aleph `  x )  e. GCH )
5 fvex 5539 . . . . 5  |-  ( aleph ` 
suc  x )  e. 
_V
65, 3syl5eleqr 2370 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  ( aleph `  suc  x )  e. GCH )
7 gchaleph2 8298 . . . 4  |-  ( ( x  e.  On  /\  ( aleph `  x )  e. GCH  /\  ( aleph `  suc  x )  e. GCH )  ->  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
81, 4, 6, 7syl3anc 1182 . . 3  |-  ( (GCH  =  _V  /\  x  e.  On )  ->  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
98ralrimiva 2626 . 2  |-  (GCH  =  _V  ->  A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
10 alephgch 8300 . . . . . 6  |-  ( (
aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  ( aleph `  x )  e. GCH )
1110ralimi 2618 . . . . 5  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  A. x  e.  On  ( aleph `  x
)  e. GCH )
12 alephfnon 7692 . . . . . 6  |-  aleph  Fn  On
13 ffnfv 5685 . . . . . 6  |-  ( aleph : On -->GCH 
<->  ( aleph  Fn  On  /\  A. x  e.  On  ( aleph `  x )  e. GCH ) )
1412, 13mpbiran 884 . . . . 5  |-  ( aleph : On -->GCH 
<-> 
A. x  e.  On  ( aleph `  x )  e. GCH )
1511, 14sylibr 203 . . . 4  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  aleph : On -->GCH )
16 df-f 5259 . . . . 5  |-  ( aleph : On -->GCH 
<->  ( aleph  Fn  On  /\  ran  aleph  C_ GCH ) )
1712, 16mpbiran 884 . . . 4  |-  ( aleph : On -->GCH 
<->  ran  aleph  C_ GCH )
1815, 17sylib 188 . . 3  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  ->  ran  aleph  C_ GCH )
19 gch2 8301 . . 3  |-  (GCH  =  _V 
<->  ran  aleph  C_ GCH )
2018, 19sylibr 203 . 2  |-  ( A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
)  -> GCH  =  _V )
219, 20impbii 180 1  |-  (GCH  =  _V 
<-> 
A. x  e.  On  ( aleph `  suc  x ) 
~~  ~P ( aleph `  x
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023   Oncon0 4392   suc csuc 4394   ran crn 4690    Fn wfn 5250   -->wf 5251   ` cfv 5255    ~~ cen 6860   alephcale 7569  GCHcgch 8242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-oexp 6485  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-har 7272  df-wdom 7273  df-cnf 7363  df-r1 7436  df-rank 7437  df-card 7572  df-aleph 7573  df-ac 7743  df-cda 7794  df-fin4 7913  df-gch 8243
  Copyright terms: Public domain W3C validator