MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchi Structured version   Unicode version

Theorem gchi 8491
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchi  |-  ( ( A  e. GCH  /\  A  ~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin )

Proof of Theorem gchi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 relsdom 7108 . . . . . . 7  |-  Rel  ~<
21brrelexi 4910 . . . . . 6  |-  ( B 
~<  ~P A  ->  B  e.  _V )
32adantl 453 . . . . 5  |-  ( ( A  ~<  B  /\  B  ~<  ~P A )  ->  B  e.  _V )
4 breq2 4208 . . . . . . 7  |-  ( x  =  B  ->  ( A  ~<  x  <->  A  ~<  B ) )
5 breq1 4207 . . . . . . 7  |-  ( x  =  B  ->  (
x  ~<  ~P A  <->  B  ~<  ~P A ) )
64, 5anbi12d 692 . . . . . 6  |-  ( x  =  B  ->  (
( A  ~<  x  /\  x  ~<  ~P A
)  <->  ( A  ~<  B  /\  B  ~<  ~P A
) ) )
76spcegv 3029 . . . . 5  |-  ( B  e.  _V  ->  (
( A  ~<  B  /\  B  ~<  ~P A )  ->  E. x ( A 
~<  x  /\  x  ~<  ~P A ) ) )
83, 7mpcom 34 . . . 4  |-  ( ( A  ~<  B  /\  B  ~<  ~P A )  ->  E. x ( A 
~<  x  /\  x  ~<  ~P A ) )
9 df-ex 1551 . . . 4  |-  ( E. x ( A  ~<  x  /\  x  ~<  ~P A
)  <->  -.  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) )
108, 9sylib 189 . . 3  |-  ( ( A  ~<  B  /\  B  ~<  ~P A )  ->  -.  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) )
11 elgch 8489 . . . . . 6  |-  ( A  e. GCH  ->  ( A  e. GCH  <->  ( A  e.  Fin  \/  A. x  -.  ( A 
~<  x  /\  x  ~<  ~P A ) ) ) )
1211ibi 233 . . . . 5  |-  ( A  e. GCH  ->  ( A  e. 
Fin  \/  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
) ) )
1312orcomd 378 . . . 4  |-  ( A  e. GCH  ->  ( A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
)  \/  A  e. 
Fin ) )
1413ord 367 . . 3  |-  ( A  e. GCH  ->  ( -.  A. x  -.  ( A  ~<  x  /\  x  ~<  ~P A
)  ->  A  e.  Fin ) )
1510, 14syl5 30 . 2  |-  ( A  e. GCH  ->  ( ( A 
~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin ) )
16153impib 1151 1  |-  ( ( A  e. GCH  /\  A  ~<  B  /\  B  ~<  ~P A )  ->  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   _Vcvv 2948   ~Pcpw 3791   class class class wbr 4204    ~< csdm 7100   Fincfn 7101  GCHcgch 8487
This theorem is referenced by:  gchen1  8492  gchen2  8493  gchpwdom  8541  gchaleph  8542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-dom 7103  df-sdom 7104  df-gch 8488
  Copyright terms: Public domain W3C validator