MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchina Structured version   Unicode version

Theorem gchina 8566
Description: Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.)
Assertion
Ref Expression
gchina  |-  (GCH  =  _V  ->  Inacc W  =  Inacc )

Proof of Theorem gchina
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  ->  x  e.  Inacc W )
2 idd 22 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( x  =/=  (/)  ->  x  =/=  (/) ) )
3 idd 22 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( ( cf `  x
)  =  x  -> 
( cf `  x
)  =  x ) )
4 pwfi 7394 . . . . . . . . . . . . 13  |-  ( y  e.  Fin  <->  ~P y  e.  Fin )
5 isfinite 7599 . . . . . . . . . . . . . 14  |-  ( ~P y  e.  Fin  <->  ~P y  ~<  om )
6 winainf 8561 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  om  C_  x
)
7 ssdomg 7145 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  ( om  C_  x  ->  om  ~<_  x ) )
86, 7mpd 15 . . . . . . . . . . . . . . 15  |-  ( x  e.  Inacc W  ->  om  ~<_  x )
9 sdomdomtr 7232 . . . . . . . . . . . . . . . 16  |-  ( ( ~P y  ~<  om  /\  om  ~<_  x )  ->  ~P y  ~<  x )
109expcom 425 . . . . . . . . . . . . . . 15  |-  ( om  ~<_  x  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x ) )
118, 10syl 16 . . . . . . . . . . . . . 14  |-  ( x  e.  Inacc W  ->  ( ~P y  ~<  om  ->  ~P y  ~<  x )
)
125, 11syl5bi 209 . . . . . . . . . . . . 13  |-  ( x  e.  Inacc W  ->  ( ~P y  e.  Fin  ->  ~P y  ~<  x
) )
134, 12syl5bi 209 . . . . . . . . . . . 12  |-  ( x  e.  Inacc W  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
1413ad3antlr 712 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ~P y  ~<  x )
)
1514a1dd 44 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x )
) )
16 vex 2951 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
17 simplll 735 . . . . . . . . . . . . . . 15  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> GCH  =  _V )
1816, 17syl5eleqr 2522 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
y  e. GCH )
19 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  -.  y  e.  Fin )
20 gchinf 8524 . . . . . . . . . . . . . 14  |-  ( ( y  e. GCH  /\  -.  y  e.  Fin )  ->  om  ~<_  y )
2118, 19, 20syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  ->  om 
~<_  y )
22 vex 2951 . . . . . . . . . . . . . 14  |-  z  e. 
_V
2322, 17syl5eleqr 2522 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
z  e. GCH )
24 gchpwdom 8541 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  y  /\  y  e. GCH  /\  z  e. GCH )  ->  ( y  ~<  z  <->  ~P y  ~<_  z ) )
2521, 18, 23, 24syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  <->  ~P y  ~<_  z ) )
26 winacard 8559 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Inacc W  ->  ( card `  x )  =  x )
27 iscard 7854 . . . . . . . . . . . . . . . . . 18  |-  ( (
card `  x )  =  x  <->  ( x  e.  On  /\  A. z  e.  x  z  ~<  x ) )
2827simprbi 451 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  x )  =  x  ->  A. z  e.  x  z  ~<  x )
2926, 28syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  Inacc W  ->  A. z  e.  x  z  ~<  x )
3029ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  ->  A. z  e.  x  z  ~<  x )
3130r19.21bi 2796 . . . . . . . . . . . . . 14  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  z  ~<  x )
32 domsdomtr 7234 . . . . . . . . . . . . . . 15  |-  ( ( ~P y  ~<_  z  /\  z  ~<  x )  ->  ~P y  ~<  x )
3332expcom 425 . . . . . . . . . . . . . 14  |-  ( z 
~<  x  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3431, 33syl 16 . . . . . . . . . . . . 13  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( ~P y  ~<_  z  ->  ~P y  ~<  x )
)
3534adantrr 698 . . . . . . . . . . . 12  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( ~P y  ~<_  z  ->  ~P y  ~<  x ) )
3625, 35sylbid 207 . . . . . . . . . . 11  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  ( z  e.  x  /\  -.  y  e.  Fin ) )  -> 
( y  ~<  z  ->  ~P y  ~<  x
) )
3736expr 599 . . . . . . . . . 10  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  ( -.  y  e.  Fin  ->  ( y  ~<  z  ->  ~P y  ~<  x
) ) )
3815, 37pm2.61d 152 . . . . . . . . 9  |-  ( ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  /\  z  e.  x )  ->  (
y  ~<  z  ->  ~P y  ~<  x ) )
3938rexlimdva 2822 . . . . . . . 8  |-  ( ( (GCH  =  _V  /\  x  e.  Inacc W )  /\  y  e.  x
)  ->  ( E. z  e.  x  y  ~<  z  ->  ~P y  ~<  x ) )
4039ralimdva 2776 . . . . . . 7  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( A. y  e.  x  E. z  e.  x  y  ~<  z  ->  A. y  e.  x  ~P y  ~<  x ) )
412, 3, 403anim123d 1261 . . . . . 6  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( ( x  =/=  (/)  /\  ( cf `  x
)  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z )  ->  (
x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) ) )
42 elwina 8553 . . . . . 6  |-  ( x  e.  Inacc W  <->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  E. z  e.  x  y  ~<  z
) )
43 elina 8554 . . . . . 6  |-  ( x  e.  Inacc 
<->  ( x  =/=  (/)  /\  ( cf `  x )  =  x  /\  A. y  e.  x  ~P y  ~<  x ) )
4441, 42, 433imtr4g 262 . . . . 5  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  -> 
( x  e.  Inacc W  ->  x  e.  Inacc ) )
451, 44mpd 15 . . . 4  |-  ( (GCH  =  _V  /\  x  e.  Inacc W )  ->  x  e.  Inacc )
4645ex 424 . . 3  |-  (GCH  =  _V  ->  ( x  e. 
Inacc W  ->  x  e. 
Inacc ) )
47 inawina 8557 . . 3  |-  ( x  e.  Inacc  ->  x  e.  Inacc W )
4846, 47impbid1 195 . 2  |-  (GCH  =  _V  ->  ( x  e. 
Inacc W  <->  x  e.  Inacc ) )
4948eqrdv 2433 1  |-  (GCH  =  _V  ->  Inacc W  =  Inacc )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   class class class wbr 4204   Oncon0 4573   omcom 4837   ` cfv 5446    ~<_ cdom 7099    ~< csdm 7100   Fincfn 7101   cardccrd 7814   cfccf 7816  GCHcgch 8487   Inacc Wcwina 8549   Inacccina 8550
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-seqom 6697  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-oexp 6722  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-har 7518  df-wdom 7519  df-cnf 7609  df-card 7818  df-cf 7820  df-cda 8040  df-fin4 8159  df-gch 8488  df-wina 8551  df-ina 8552
  Copyright terms: Public domain W3C validator