MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchxpidm Unicode version

Theorem gchxpidm 8291
Description: An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchxpidm  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )

Proof of Theorem gchxpidm
StepHypRef Expression
1 0ex 4150 . . . . . . . 8  |-  (/)  e.  _V
21a1i 10 . . . . . . 7  |-  ( -.  A  e.  Fin  ->  (/)  e.  _V )
3 xpsneng 6947 . . . . . . 7  |-  ( ( A  e. GCH  /\  (/)  e.  _V )  ->  ( A  X.  { (/) } )  ~~  A )
42, 3sylan2 460 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  { (/)
} )  ~~  A
)
5 ensym 6910 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~~  A  ->  A  ~~  ( A  X.  { (/) } ) )
64, 5syl 15 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  X.  { (/) } ) )
7 df1o2 6491 . . . . . . 7  |-  1o  =  { (/) }
8 id 19 . . . . . . . . . . . 12  |-  ( A  =  (/)  ->  A  =  (/) )
9 0fin 7087 . . . . . . . . . . . 12  |-  (/)  e.  Fin
108, 9syl6eqel 2371 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  A  e. 
Fin )
1110necon3bi 2487 . . . . . . . . . 10  |-  ( -.  A  e.  Fin  ->  A  =/=  (/) )
1211adantl 452 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  =/=  (/) )
13 0sdomg 6990 . . . . . . . . . 10  |-  ( A  e. GCH  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1413adantr 451 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( (/)  ~<  A  <->  A  =/=  (/) ) )
1512, 14mpbird 223 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  -> 
(/)  ~<  A )
16 0sdom1dom 7060 . . . . . . . 8  |-  ( (/)  ~<  A 
<->  1o  ~<_  A )
1715, 16sylib 188 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  1o  ~<_  A )
187, 17syl5eqbrr 4057 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  { (/) }  ~<_  A )
19 xpdom2g 6958 . . . . . 6  |-  ( ( A  e. GCH  /\  { (/)
}  ~<_  A )  -> 
( A  X.  { (/)
} )  ~<_  ( A  X.  A ) )
2018, 19syldan 456 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  { (/)
} )  ~<_  ( A  X.  A ) )
21 endomtr 6919 . . . . 5  |-  ( ( A  ~~  ( A  X.  { (/) } )  /\  ( A  X.  { (/) } )  ~<_  ( A  X.  A ) )  ->  A  ~<_  ( A  X.  A ) )
226, 20, 21syl2anc 642 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ( A  X.  A ) )
23 canth2g 7015 . . . . . . . . . 10  |-  ( A  e. GCH  ->  A  ~<  ~P A
)
2423adantr 451 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<  ~P A
)
25 sdomdom 6889 . . . . . . . . 9  |-  ( A 
~<  ~P A  ->  A  ~<_  ~P A )
2624, 25syl 15 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~<_  ~P A )
27 xpdom1g 6959 . . . . . . . 8  |-  ( ( A  e. GCH  /\  A  ~<_  ~P A )  ->  ( A  X.  A )  ~<_  ( ~P A  X.  A
) )
2826, 27syldan 456 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ( ~P A  X.  A ) )
29 pwexg 4194 . . . . . . . . 9  |-  ( A  e. GCH  ->  ~P A  e. 
_V )
3029adantr 451 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P A  e.  _V )
31 xpdom2g 6958 . . . . . . . 8  |-  ( ( ~P A  e.  _V  /\  A  ~<_  ~P A )  -> 
( ~P A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
3230, 26, 31syl2anc 642 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
33 domtr 6914 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( ~P A  X.  A )  /\  ( ~P A  X.  A
)  ~<_  ( ~P A  X.  ~P A ) )  ->  ( A  X.  A )  ~<_  ( ~P A  X.  ~P A
) )
3428, 32, 33syl2anc 642 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ( ~P A  X.  ~P A ) )
35 simpl 443 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  e. GCH )
36 pwcdaen 7811 . . . . . . . . 9  |-  ( ( A  e. GCH  /\  A  e. GCH )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A ) )
3735, 36syldan 456 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  A )  ~~  ( ~P A  X.  ~P A
) )
38 ensym 6910 . . . . . . . 8  |-  ( ~P ( A  +c  A
)  ~~  ( ~P A  X.  ~P A )  ->  ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
) )
3937, 38syl 15 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
) )
40 gchcdaidm 8290 . . . . . . . 8  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  +c  A
)  ~~  A )
41 pwen 7034 . . . . . . . 8  |-  ( ( A  +c  A ) 
~~  A  ->  ~P ( A  +c  A
)  ~~  ~P A
)
4240, 41syl 15 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ~P ( A  +c  A )  ~~  ~P A )
43 entr 6913 . . . . . . 7  |-  ( ( ( ~P A  X.  ~P A )  ~~  ~P ( A  +c  A
)  /\  ~P ( A  +c  A )  ~~  ~P A )  ->  ( ~P A  X.  ~P A
)  ~~  ~P A
)
4439, 42, 43syl2anc 642 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( ~P A  X.  ~P A )  ~~  ~P A )
45 domentr 6920 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( ~P A  X.  ~P A )  /\  ( ~P A  X.  ~P A )  ~~  ~P A )  ->  ( A  X.  A )  ~<_  ~P A )
4634, 44, 45syl2anc 642 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<_  ~P A )
47 gchinf 8279 . . . . . . 7  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  om  ~<_  A )
48 pwxpndom 8288 . . . . . . 7  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  X.  A
) )
4947, 48syl 15 . . . . . 6  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ~P A  ~<_  ( A  X.  A ) )
50 ensym 6910 . . . . . . 7  |-  ( ( A  X.  A ) 
~~  ~P A  ->  ~P A  ~~  ( A  X.  A ) )
51 endom 6888 . . . . . . 7  |-  ( ~P A  ~~  ( A  X.  A )  ->  ~P A  ~<_  ( A  X.  A ) )
5250, 51syl 15 . . . . . 6  |-  ( ( A  X.  A ) 
~~  ~P A  ->  ~P A  ~<_  ( A  X.  A ) )
5349, 52nsyl 113 . . . . 5  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  -.  ( A  X.  A )  ~~  ~P A )
54 brsdom 6884 . . . . 5  |-  ( ( A  X.  A ) 
~<  ~P A  <->  ( ( A  X.  A )  ~<_  ~P A  /\  -.  ( A  X.  A )  ~~  ~P A ) )
5546, 53, 54sylanbrc 645 . . . 4  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~<  ~P A )
5622, 55jca 518 . . 3  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  ~<_  ( A  X.  A )  /\  ( A  X.  A
)  ~<  ~P A ) )
57 gchen1 8247 . . 3  |-  ( ( ( A  e. GCH  /\  -.  A  e.  Fin )  /\  ( A  ~<_  ( A  X.  A )  /\  ( A  X.  A )  ~<  ~P A
) )  ->  A  ~~  ( A  X.  A
) )
5856, 57mpdan 649 . 2  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  A  ~~  ( A  X.  A ) )
59 ensym 6910 . 2  |-  ( A 
~~  ( A  X.  A )  ->  ( A  X.  A )  ~~  A )
6058, 59syl 15 1  |-  ( ( A  e. GCH  /\  -.  A  e.  Fin )  ->  ( A  X.  A
)  ~~  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788   (/)c0 3455   ~Pcpw 3625   {csn 3640   class class class wbr 4023   omcom 4656    X. cxp 4687  (class class class)co 5858   1oc1o 6472    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862   Fincfn 6863    +c ccda 7793  GCHcgch 8242
This theorem is referenced by:  gchhar  8293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-oexp 6485  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-har 7272  df-cnf 7363  df-card 7572  df-cda 7794  df-fin4 7913  df-gch 8243
  Copyright terms: Public domain W3C validator