Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  geme2 Unicode version

Theorem geme2 25275
Description: The greatest element of  X is a maximal element. (Contributed by FL, 19-Sep-2011.)
Hypothesis
Ref Expression
geme2.1  |-  X  =  dom  R
Assertion
Ref Expression
geme2  |-  ( ( R  e.  PosetRel  /\  ( R  sup w  X )  e.  X )  -> 
( R  sup w  X )  e.  ( mxl `  R ) )

Proof of Theorem geme2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 geme2.1 . . . . 5  |-  X  =  dom  R
21eleq2i 2347 . . . 4  |-  ( ( R  sup w  X
)  e.  X  <->  ( R  sup w  X )  e. 
dom  R )
32biimpi 186 . . 3  |-  ( ( R  sup w  X
)  e.  X  -> 
( R  sup w  X )  e.  dom  R )
43adantl 452 . 2  |-  ( ( R  e.  PosetRel  /\  ( R  sup w  X )  e.  X )  -> 
( R  sup w  X )  e.  dom  R )
5 simpll 730 . . . 4  |-  ( ( ( R  e.  PosetRel  /\  ( R  sup w  X
)  e.  X )  /\  x  e.  dom  R )  ->  R  e.  PosetRel )
6 simpr 447 . . . . 5  |-  ( ( ( R  e.  PosetRel  /\  ( R  sup w  X
)  e.  X )  /\  x  e.  dom  R )  ->  x  e.  dom  R )
71oveq2i 5869 . . . . . . . 8  |-  ( R  sup w  X )  =  ( R  sup w  dom  R )
87, 1eleq12i 2348 . . . . . . 7  |-  ( ( R  sup w  X
)  e.  X  <->  ( R  sup w  dom  R )  e.  dom  R )
98biimpi 186 . . . . . 6  |-  ( ( R  sup w  X
)  e.  X  -> 
( R  sup w  dom  R )  e.  dom  R )
109ad2antlr 707 . . . . 5  |-  ( ( ( R  e.  PosetRel  /\  ( R  sup w  X
)  e.  X )  /\  x  e.  dom  R )  ->  ( R  sup w  dom  R )  e.  dom  R )
11 eqid 2283 . . . . . 6  |-  dom  R  =  dom  R
1211supdefa 25263 . . . . 5  |-  ( ( R  e.  PosetRel  /\  x  e.  dom  R  /\  ( R  sup w  dom  R
)  e.  dom  R
)  ->  x R
( R  sup w  dom  R ) )
135, 6, 10, 12syl3anc 1182 . . . 4  |-  ( ( ( R  e.  PosetRel  /\  ( R  sup w  X
)  e.  X )  /\  x  e.  dom  R )  ->  x R
( R  sup w  dom  R ) )
14 oveq2 5866 . . . . . . . . . . 11  |-  ( dom 
R  =  X  -> 
( R  sup w  dom  R )  =  ( R  sup w  X
) )
1514breq2d 4035 . . . . . . . . . 10  |-  ( dom 
R  =  X  -> 
( x R ( R  sup w  dom  R )  <->  x R ( R  sup w  X
) ) )
16153anbi3d 1258 . . . . . . . . 9  |-  ( dom 
R  =  X  -> 
( ( R  e.  PosetRel 
/\  ( R  sup w  X ) R x  /\  x R ( R  sup w  dom  R ) )  <->  ( R  e. 
PosetRel  /\  ( R  sup w  X ) R x  /\  x R ( R  sup w  X
) ) ) )
17 psasym 14319 . . . . . . . . 9  |-  ( ( R  e.  PosetRel  /\  ( R  sup w  X ) R x  /\  x R ( R  sup w  X ) )  -> 
( R  sup w  X )  =  x )
1816, 17syl6bi 219 . . . . . . . 8  |-  ( dom 
R  =  X  -> 
( ( R  e.  PosetRel 
/\  ( R  sup w  X ) R x  /\  x R ( R  sup w  dom  R ) )  ->  ( R  sup w  X )  =  x ) )
1918eqcoms 2286 . . . . . . 7  |-  ( X  =  dom  R  -> 
( ( R  e.  PosetRel 
/\  ( R  sup w  X ) R x  /\  x R ( R  sup w  dom  R ) )  ->  ( R  sup w  X )  =  x ) )
201, 19ax-mp 8 . . . . . 6  |-  ( ( R  e.  PosetRel  /\  ( R  sup w  X ) R x  /\  x R ( R  sup w  dom  R ) )  ->  ( R  sup w  X )  =  x )
21203exp 1150 . . . . 5  |-  ( R  e.  PosetRel  ->  ( ( R  sup w  X ) R x  ->  (
x R ( R  sup w  dom  R
)  ->  ( R  sup w  X )  =  x ) ) )
2221com23 72 . . . 4  |-  ( R  e.  PosetRel  ->  ( x R ( R  sup w  dom  R )  ->  (
( R  sup w  X ) R x  ->  ( R  sup w  X )  =  x ) ) )
235, 13, 22sylc 56 . . 3  |-  ( ( ( R  e.  PosetRel  /\  ( R  sup w  X
)  e.  X )  /\  x  e.  dom  R )  ->  ( ( R  sup w  X ) R x  ->  ( R  sup w  X )  =  x ) )
2423ralrimiva 2626 . 2  |-  ( ( R  e.  PosetRel  /\  ( R  sup w  X )  e.  X )  ->  A. x  e.  dom  R ( ( R  sup w  X ) R x  ->  ( R  sup w  X )  =  x ) )
25 posispre 25241 . . . 4  |-  ( R  e.  PosetRel  ->  R  e. PresetRel )
2611ismxl2 25267 . . . 4  |-  ( R  e. PresetRel  ->  ( ( R  sup w  X )  e.  ( mxl `  R
)  <->  ( ( R  sup w  X )  e.  dom  R  /\  A. x  e.  dom  R
( ( R  sup w  X ) R x  ->  ( R  sup w  X )  =  x ) ) ) )
2725, 26syl 15 . . 3  |-  ( R  e.  PosetRel  ->  ( ( R  sup w  X )  e.  ( mxl `  R
)  <->  ( ( R  sup w  X )  e.  dom  R  /\  A. x  e.  dom  R
( ( R  sup w  X ) R x  ->  ( R  sup w  X )  =  x ) ) ) )
2827adantr 451 . 2  |-  ( ( R  e.  PosetRel  /\  ( R  sup w  X )  e.  X )  -> 
( ( R  sup w  X )  e.  ( mxl `  R )  <-> 
( ( R  sup w  X )  e.  dom  R  /\  A. x  e. 
dom  R ( ( R  sup w  X
) R x  -> 
( R  sup w  X )  =  x ) ) ) )
294, 24, 28mpbir2and 888 1  |-  ( ( R  e.  PosetRel  /\  ( R  sup w  X )  e.  X )  -> 
( R  sup w  X )  e.  ( mxl `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   class class class wbr 4023   dom cdm 4689   ` cfv 5255  (class class class)co 5858   PosetRelcps 14301    sup w cspw 14303  PresetRelcpresetrel 25215   mxlcmxl 25216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-undef 6298  df-riota 6304  df-ps 14306  df-spw 14308  df-prs 25223  df-mxl 25246
  Copyright terms: Public domain W3C validator